tim a de a^2/a(a+1)(a+2)(a+3) là số cp
cho M=(1+\(\frac{a}{a^2+1}\)) : (\(\frac{1}{a-1}\)- \(\frac{2a}{a^3-a^2+a-1}\))
tim a thuoc z de m thuoc z
tim a de m=7.tim a de m>0
ĐKXĐ bạn tự xét nhé
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)
\(M=\frac{a^2+a+1}{a-1}\)
Để M thuộc Z thì \(a^2+a+1⋮a-1\)
\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)
\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)
\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)
Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)
\(\Rightarrow3⋮a-1\)
\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)
Để M = 7 thì :
\(\frac{a^2+a+1}{a-1}=7\)
\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)
\(\Leftrightarrow a^2+a+1=7a-7\)
\(\Leftrightarrow a^2-6a+8=0\)
\(\Leftrightarrow a^2-2a-4a+8=0\)
\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)
Để M > 0 thì :
\(\frac{a^2+a+1}{a-1}>0\)
Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)
Chứng minh \(a^2+a+1>0\):
Đặt \(B=a^2+a+1\)
\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)
\(\Rightarrow B>0\left(đpcm\right)\)
Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)
A = 2/ x-1 .tim dieu kien cua x de A la phan so . tim A khi x = 2 ; x = -3. tim dieu kien cua x de A la so nguyen ( A thuoc Z )
cho A(x)=x^(2-2ax+a^(2, Q(x)=x^(2+(3a+1)x+a^(2. Tim gia tri cua a de A(1)=Q(3)
A(x)=x^2-2ax+a^2
Q(x)=x^2+(3a+1)x+a^2
A(1)=Q(3)
=>1-2a+a^2=3^2+3(3a+1)+a^2
=>1-2a=9+9a+3
=>9a+12=-2a+1
=>11a=-11
=>a=-1
Tim chu so a de a(a+1)(a+2)(a+3) la so chinh phuong
bai 1
cho bieu thuc A = 5/n+1 voi N THUOC Z
a, de A la phan so thi n co dieu kien gi ?
b , tim tat ca cac gia tri nguyen cua n de gia tri A la 1 so nguyen ?
bai 2
cho bieu thuc M = 6/n-3 voi n thuoc Z .Co bao nhieu gia tri cua n de :
a, M ko phai la phan so
b , M la phan so va cp gia tri nguyen ?
bai 3 viet tap hop cacs so nguyen sao cho :
-12/4 < x <6/3
Bài 1:
a: Để A là phân số thì n+1<>0
hay n<>-1
b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Tim x thuoc Z de A thuoc Z va tim gia tri do .
a/ A= x+3/x-2 .
b/ A= 1-2x/x+3 .
1,các số sau có cp ko
a, A=2+2^2+2^3+2^4+.......+2^20
b,B=5+5^2+5^3+5^4+..........+5^100
2,cmr nếu tổng các c/s của 1 số cp ko chia hết cho 9 thì ko chia hết cho 6
3'cho 5 số cp bất kì có c/s hàng đơn vị là 6. Cmr tổng các c/s hàng chục của 5 c/s trên là 1 số cp
Tim so nguyen a de \(\frac{a^2 +a+3}{a+1}\)
tim so nguyen a de a^2 + a + 3 / a+1 la so nguyen
\(A=\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
Để A nguyên thì a+1 là U(3) = {-3;-1;1;3}
a + 1 = -3 => a = -4a + 1 = -1 => a = -2a + 1 = 1 => a = 0a + 1 = 3 => a = 2Vậy a có 4 giá trị nguyên là: -4;-2;0;2 để A nguyên.
\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\)là số nguyên thì \(\frac{3}{a+1}\)phải là số nguyên
\(\frac{3}{a+1}\)là số nguyên khi và chỉ khi 3 chia hết cho a+1
=>a+1\(\in\)Ư(3)
=>a+1\(\in\){-3;-1;1;3}
=>a\(\in\){-4;-2;0;2}
\(\frac{a^2+a+3}{a+1}=\frac{a.\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)
Để \(\frac{a^2+a+3}{a+1}\)là 1 số nguyên thì 3 chia hết cho a+1
=> \(a+1\varepsilon U\left(3\right)=\left\{1;-1;3;-3\right\}\)
=> \(a\varepsilon\left\{0;-2;2;-4\right\}\)