Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bích Hạnh
Xem chi tiết
Trần Thanh Phương
13 tháng 12 2018 lúc 18:23

ĐKXĐ bạn tự xét nhé

\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)

\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)

\(M=\frac{a^2+a+1}{a-1}\)

Để M thuộc Z thì \(a^2+a+1⋮a-1\)

\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)

\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)

Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)

\(\Rightarrow3⋮a-1\)

\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)

Để M = 7 thì :

\(\frac{a^2+a+1}{a-1}=7\)

\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)

\(\Leftrightarrow a^2+a+1=7a-7\)

\(\Leftrightarrow a^2-6a+8=0\)

\(\Leftrightarrow a^2-2a-4a+8=0\)

\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)

Để M > 0 thì :

\(\frac{a^2+a+1}{a-1}>0\)

Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)

Trần Thanh Phương
13 tháng 12 2018 lúc 18:30

Chứng minh \(a^2+a+1>0\):

Đặt \(B=a^2+a+1\)

\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)

\(\Rightarrow B>0\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)

Quyến Lương
Xem chi tiết
hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 20:48

A(x)=x^2-2ax+a^2

Q(x)=x^2+(3a+1)x+a^2

A(1)=Q(3)

=>1-2a+a^2=3^2+3(3a+1)+a^2

=>1-2a=9+9a+3

=>9a+12=-2a+1

=>11a=-11

=>a=-1

Phạm Văn Toản
Xem chi tiết
phamthithanhtam
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2022 lúc 8:13

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

Nguyễn Phương Linh
Xem chi tiết
Nguyen Tuan Dat
Xem chi tiết
Nguyễn Đức Mạnh
Xem chi tiết
Trần Ngô Hạ Uyên
16 tháng 3 2018 lúc 20:12

đề ghi thiếu hả  bạn

neu em con ton tai
Xem chi tiết
Đinh Thùy Linh
19 tháng 6 2016 lúc 8:22

\(A=\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

Để A nguyên thì a+1 là U(3) = {-3;-1;1;3}

a + 1 = -3 => a = -4a + 1 = -1 => a = -2a + 1 = 1 => a = 0a + 1 = 3 => a = 2

​Vậy a có 4 giá trị nguyên là: -4;-2;0;2 để A nguyên.

Trà My
19 tháng 6 2016 lúc 8:23

\(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=\frac{a\left(a+1\right)}{a+1}+\frac{3}{a+1}=a+\frac{3}{a+1}\)

Để \(\frac{a^2+a+3}{a+1}\)là số nguyên thì \(\frac{3}{a+1}\)phải là số nguyên

\(\frac{3}{a+1}\)là số nguyên khi và chỉ khi 3 chia hết cho a+1

=>a+1\(\in\)Ư(3)

=>a+1\(\in\){-3;-1;1;3}

=>a\(\in\){-4;-2;0;2}

Hậu Duệ Mặt Trời
19 tháng 6 2016 lúc 8:24

\(\frac{a^2+a+3}{a+1}=\frac{a.\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

 Để \(\frac{a^2+a+3}{a+1}\)là 1 số nguyên thì 3 chia hết cho a+1

=> \(a+1\varepsilon U\left(3\right)=\left\{1;-1;3;-3\right\}\)

=> \(a\varepsilon\left\{0;-2;2;-4\right\}\)