Cho hình thang vuông ABCD, có góc A= góc B=90 độ và AD=2BC, kẻ AH vuông góc với BD. Gọi I là trung điểm HD. Chứng minh CI vuông góc AI
cho hình thang vuông ABCD có A=B=90 độ và AD=2BC Kẻ AH vuông góc với BD(H thuộc BD) Gọi I là trung điểm của HD. Chứng minh CI vuông AI
Bài 9. Cho hình thang vuông ABCD, có = = 90o và AD = 2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD.
Chứng minh rằng: CI ^ AI
Giải:
Gọi G là trung điểm AD. Suy ra GI là đường trung bình traong tam giác ADH => GI // AH.
Vẽ IJ // AD => Tứ giác AGIJ là hình bình hành => AG = IJ = BC => Tứ giác BCIJ cũng là hình bình hành.
Vì IJ // AD => IJ vuông góc với AB. Trong tam giác ABI thì J là giao điểm hai đường cao IJ và AH nên J là trực tâm => BJ vuông góc AI.
Mà BJ // CI (Do tứ giác BCIJ là hình bình hành) nên CI vuông góc với AI.
Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. kẻ AH vuông góc với BD. Gọi I là trung điểm của HD. cmr CI vuông góc với AI
Cho hình thang vuông ABCD có góc A=góc B=90o và AD=2BC. Kẻ AH vuông góc với BD (H thuộc BD). Gọi I là trung điểm của HD. CMR CI vuông góc với AI
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABD. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
Cho hình thang vuông ABCD với góc A bằng góc B bằng 90 độ AD=2BC
a) Kẻ CK vuông góc với AD tại K Tứ giác ABCK là hình gì? Tại sao?
b) Gọi AH là đường cao của tam giác ABC. E và F lần lượt là trung điểm của AH và DH chứng minh rằng tứ giác BCFE là hình bình hành
c) Chứng minh BE vuông góc với AF
cho hình thang vuông ABCD có góc A=90;góc B=90;AB=BC=1/2 AD.E là trung điểm của AD. a)tứ giác ANCE là hình gì?Vì sao? b) kẻ AH vuông góc BD(H thuộc BD).Gọi M,N lần lượt là trung điểm của HD,HA. tg BCMN là hình bình hành c)AM vuông góc MC
b: Ta có: \(AE=ED=\dfrac{1}{2}AD\)
mà \(AB=BC=\dfrac{AD}{2}\)
nên AE=ED=AB=BC
Xét tứ giác AECB có
AE//CB
AE=CB
Do đó: AECB là hình bình hành
mà \(\widehat{EAB}=90^0\)
nên AECB là hình chữ nhật
mà AE=AB
nên AECB là hình vuông
Xét ΔHAD có
N là trung điểm của AH
M là trung điểm của HD
Do đó: MN là đường trung bình của ΔHAD
Suy ra: MN//AD và \(MN=\dfrac{AD}{2}\)
mà \(AE=BC=\dfrac{AD}{2}\) và AD//BC
nên MN//BC và MN=BC
Xét tứ giác BCMN có
MN//BC
MN=BC
Do đó: BCMN là hình bình hành
Cho hình bình hành ABCD (AD<AB) Kẻ AH và CI vuông góc với BD. Gọi M là trung điểm của HI
a, Tứ giác AHCI là hình gì? Vì sao?
b,Chứng minh A đối xứng với C qua M
c, Đường thẳng đi qua D vuông góc với BC cắt CI tại N. Chứng minh AB vuông góc với BN
a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)
Do đó \(AH=CI\)
Mà AH//CI (⊥BD) nên AHCI là hbh
b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC
Do đó A đối xứng C qua M
Cho hình bình hành ABCD có ac<bd. Từ A kẻ AH vuông góc với BD. Từ C kẻ CK vuông góc với BD. Gọi O là trung điểm BD
a) Chứng minh: AHCK là hình bình hành, từ đó suy ra OH=CK
b) Chứng minh: HD=BK
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm của AC
AHCK là hình bình hành
=>AC cất HK tại trung điểm của mỗi đường
=>OH=OK
b: ΔAHD=ΔCKB
=>HD=BK
Cho hình thang vuông ABCD có AB // CD, góc A = góc D = 90 độ, AB + DC = BC. Gọi I là giao điểm của AC và BD, trên cạnh BC lấy điểm M sao cho MB = AB. MI cắt AD tại N. Chứng minh: Mi vuông góc với AD.
Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD