chứng minh
\(\sqrt{3}\) là số vô tỉ
với mọi n ∈ N: \(n^2\) ⋮ 3 => n ⋮ 3
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
Chứng minh rằng:
a) \(\sqrt{2}+\sqrt{3}\) là số vô tỉ
b) \(\sqrt{2}+\sqrt{3}+\sqrt{5}\) là số vô tỉ
c) A = \(\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) B = \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( m;n thuộc Q )
Ta có : \(\sqrt{2}\)là số vô tỉ
\(\sqrt{3}\)là số vô tỉ
\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm )
b) tương tự :
\(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)
\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ
c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ
d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ
\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ
phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí
b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a
bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí
c bình phương lên => căn 2=A-1 thuộc Q => vô lí
d tương tự căn 3=Bn-mn thuộc Q => vô lí
chúc bạn học tốt
Chứng Minh rằng
a, \(\sqrt{1+2+3+4+.....\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\)
b, a là số hữu tỉ , b là số vô tỉ thì a+b là số vô tỉ
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
Bài 1: Chứng minh rằng 2002n -138n-1 chia hết cho 207 với mọi số tự nhiên n
Bài 2: Cho số tự nhiên n và n-1 không chia hết cho 4. CHứng minh rằng 7n + 2 không thể là số chính phương
Bài 3: Chứng minh rằng dãy 2n - 3 ( n>1) có vô số số hạng chia hết cho 5 và vô số số hạng chia hết cho 13 nhưng không có số hạng nào chia hết cho 65.
Chứng minh : \(m+\frac{\sqrt{3}}{n}\)là số vô tỉ ( với m ; n là số hữu tỉ n khác 0)
Bn tham khảo nè:
giả sử x + y = a với a là số hữu tỉ
=> y = a - x
mà a và x là hữu tỉ nên a - x cũng hữu tỉ
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n)
=> y cũng hữu tỉ
vô lý
chứng minh rằng các số sau là số vô tỉ :
a, \(\sqrt{1+\sqrt{2}}\)
b, m+\(\frac{\sqrt{3}}{n}\)với m,n là các số hữu tỉ , n khác 0
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
Với mọi số nguyên dương n. Chứng minh\(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\) là số nguyên dương
có 1 định lý luôn tồn tại A;B nguyên sao cho:
\(\left(3+\sqrt{5}\right)^n=A+B\sqrt{x};\left(3-\sqrt{5}\right)^n=A-B\sqrt{x}\text{ cộng lại suy ra đpcm}\)
Đặt \(S_k=\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\)
Quy nạp theo ý anh alibaba thử :V
Với \(n=1\Rightarrow\left(3+\sqrt{5}\right)+\left(3-\sqrt{5}\right)=6\) là số nguyên
Giả sử điều đó đúng với \(\forall n=k\)
Ta sẽ chứng minh điều đó đúng với \(n=k+1\) . Thật vậy !
Dễ có: \(3+\sqrt{5}=2\left(\frac{1+\sqrt{5}}{2}\right)^2;3-\sqrt{5}=2\left(\frac{1-\sqrt{5}}{2}\right)^2\)
Đặt \(x_1=\frac{1-\sqrt{5}}{2};x_2=\frac{1+\sqrt{5}}{2}\) ta có được \(x_1+x_2=1;x_1x_2=1\Rightarrow x_1;x_2\) là 2 nghiệm của phương trình:\(x^2-x-1=0\)
Ta có:\(S_{k+1}=2^{n+1}\cdot x_1^{n+1}+2^{n+1}\cdot x_2^{n+1}\)
\(=2^{n+1}\left(x_1^{n+1}+x_2^{n+1}\right)\)
\(=2^{n+1}\left[\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_2^{n-1}\right)\right]=2^{n+1}\left(S_n-S_{n-1}\right)\)
Bằng phép quy nạp ta có đpcm
Với mọi số nguyên dương n, chứng minh \(\left(3+\sqrt{5}\right)^n+\left(3-\sqrt{5}\right)^n\)là số nguyên dương
Bạn tham khảo tại đây
https://olm.vn/hoi-dap/detail/56101917412.html
Không chắc lắm đâu nhé !
Câu hỏi của Quỳnh Hương - Toán lớp 9 - Học toán với OnlineMath
Chứng minh các số sau vô tỉ:
a)\(\sqrt{1+\sqrt{2}}\)
b)\(m+\frac{\sqrt{3}}{n}\)với m,n là các số hữu tỉ, n\(\ne0\)
Bài làm:
a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ
=> \(1+\sqrt{2}\) vô tỉ
\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ
b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ
=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ
=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ