Cho hình thang ABCD có góc B= góc C =90o. Hai đường chéo vuông góc với nhau tại H. Biết AB=3 căn 5 cm,HA=3cm.Tinh HB,HC,HD
Cho hình thang ABCD có \(\widehat{B}=\widehat{C}=90^O\). Hai đường chéo vuông góc với nhau tại H. Biết AB = \(3\sqrt{5}\) cm, HA = 3cm. Chứng minh:
a) HA:HB:HC:HD = 1:2:4:8
b) \(\dfrac{1}{AB^2}-\dfrac{1}{CD^2}=\dfrac{1}{HB^2}-\dfrac{1}{HC^2}\)
Cho hình thang ABCD có , hai đường chéo vuông góc với nhau tại H.
Biết AB = 3căn 5 ,HA=3. Khi đó độ dài HC là cm.
Cho hình thang vuông ABCD ( ∠ A = ∠ D = 90 0 ) có hai đường chéo AC và BD vuông góc với nhau tại H. Biết HD = 18cm, HB = 8cm, tính diện tích hình thang ABCD
A. 504 c m 2
B. 505 c m 2
C. 506 c m 2
D. 506 c m 2
Xét ∆ ADB vuông tại A có: AH là đường cao ứng với cạnh huyền BD
⇒ A H 2 = HB. HD = 8.18 HA = 12 (cm) (hệ thức lượng trong tam giác vuông)
Xét ∆ ADC vuông tại D có: DH là đường cao ứng với cạnh huyền AC
⇒ H D 2 = H A . H C ⇒ 18 2 = 12 H C => HC = 27 (cm) (hệ thức lượng trong tam giác vuông)
Ta có: AC = AH + HC = 12 + 27 = 39 cm
BD = BH + HD = 8 + 18 = 26cm
S A B C D = A C . B D 2 = 26.39 2 = 507 c m 2
Đáp án cần chọn là: D
Cho hình thang vuông ABCD (góc A = góc D = 90o ) có AC vuông góc với BD tại H .Biết HB=8cm, HD=18cm .Tính diện tích hình thang
Ta có: \(AH^2=HD.HB=18.8=144\Rightarrow AH=12\) (cm)
\(\Rightarrow AD=\sqrt{AH^2+HD^2}=\sqrt{12^2+18^2}=6\sqrt{13}\)
\(AB=\sqrt{12^2+8^2}=4\sqrt{13}\)
Ta có: \(DH^2=HA.HC\Rightarrow CH=\dfrac{DH^2}{HA}=\dfrac{18^2}{12}=27\)
\(\Rightarrow CD=\sqrt{CH^2+HD^2}=\sqrt{27^2+18^2}=9\sqrt{13}\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).AD=\dfrac{1}{2}\left(4\sqrt{13}+9\sqrt{13}\right).6\sqrt{13}\)
\(=507\left(cm^2\right)\)
Cho hình thang ABCD có góc B=C=90 độ , hai đường chéo vuông góc với nhau tại H.
Biết AB=\(3\sqrt{5}\),\(HA=3\) . Khi đó độ dài HC là
hệ thức lượng \(AB^2=AH\cdot AC\)
TÌM ĐƯỢC AC=15cm
suy ra HC=AC-AH=15-3=12cm
bài 1: CHo hình thang vuông ABCD có hai đường chéo Ac và BD vuông góc với nhau tại H. biết HD= 18cm, HB= 8cm. Tính diện tích hình thang ABCD
bài 2:Cho tam giác vuông ABC vuông tại A, đường cao Ah. tính độ dài các đoạn thắng BH,AH,AC nếu biết
a, AB=12cm, Ch=12,8cm
b, AB=4 cm, Ch=2/2 cm
1/Cho tứ giác ABCD có hai đường chéo cắt nhau tại O biết góc A bằng 60 độ AC bằng 6 cm BC = 4 cm Tính diện tích ABCD
2/Cho hình thang ABCD có góc B= góc C =90o. Hai đường chéo vuông góc với nhau tại H. Biết AB=3 căn 5 cm,HA=3cm.Tinh HB,HC,HD
3/Tính giá trị biểu thức
a/ \(\cos^220^0+\cos^230^0+....+\cos^270^0\)
\(B=5cos^2\alpha+2sin^2\alpha.\) Biết sin\(\alpha\)=2/3
Bài 3:
a: \(=\left(cos^220^0+cos^270^0\right)+\left(cos^230^0+cos^260^0\right)+\left(cos^240^0+cos^250^0\right)\)
=1+1+1
=3
b: \(=5\left(1-sin^2a\right)+2sin^2a\)
\(=5-3sin^2a\)
\(=5-3\cdot\dfrac{4}{9}=5-\dfrac{4}{3}=\dfrac{11}{3}\)
1, Cho hình thang vuông ABCD có góc B = góc C = 90 độ. 2 đg chéo vuông góc với nhau tại H, biết AB = 3.\(\sqrt{5}\); AH= 3 cm.
a/ Tính HB, HC, HD;
b/ CMR: \(\frac{1}{AB^2}-\frac{1}{CD^2}=\frac{1}{HB^2}-\frac{1}{HC^2}\)
2, Đg trung tuyến ứng vs cạnh huyền của 1 tam giác vuông là 25cm. Tỉ số 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền là 16 : 9. Tính độ dài 2 cạnh góc vuông ?
Cho hình thang ABCD có B=C=90, hai đường chéo vuông góc với nhau tại H. BiếtAB=3CA5HA=3CM . Khi đó độ dài HC là cm.