E = 1x1+2x2+3×3+...+15×15
Tính nhanh
E = 1x1+2x2+3×3+...+15×15
E = 1 x 1 + 2 x2 + 3 x 3 + . . . + 15 x 15
E = 1( 2 -1 ) + 2 ( 3 -1 ) + 3 ( 4-1 ) + . . . + 15 ( 16 -1 )
E = 1.2 -1 + 2.3 - 2 + 3.4 - 3 + . . . + 15 . 16 - 15
E = ( 1.2 + 2.3 + 3.4+ . . . + 15 .16 ) - ( 1 + 2 + 3 + . . . + 15 )
E = 1360- 120
E = 1240
Tk mk nha
a=1x1^2+2x2^3+3x4^2+......+98x99^2
S1=1x1
S2=2x2-1x1
S3=3x3-(2x2-1x1)
S4=4x4-(3x3-(2x2-1x1))
..................................
a)Hãy viết dãy số S5
b)Nếu dãy số này cứ tiếp tục như thế thì S2011 có giá trị là bao nhiêu?
S5=5x5-(4x4-(3x3-(2x2-1x1)))
S2011=2001x2001-(2000x2000-(1999x1999-(....)))
Bạn ơi tính như vậy thì phần b tính kiểu jr bao nhiêu dấu ngoạc làm sao tính được
E= 1x1+2x2+3x3+4x4+...+99x99
G=1x100+2x99+3x98+...+99x2+100x1
giúp mik với mik đang vội
\(E=1.1+2.2+3.3+4.4+...+99.99\)
\(\Rightarrow E=1^2+2^2+3^2+4^2+...+99^2\)
\(\Rightarrow E=\dfrac{99.\left(99+1\right)\left(2.99+1\right)}{6}\)
\(\Rightarrow E=\dfrac{99.100.199}{6}\)
\(\Rightarrow E=33.50.199=328350\)
E = 1 x 1 + 2 x 2 + 3 x 3 + 4 x 4 +...+ 99 x 99
E = 1x(2-1) + 2 x (3-1)+...+ 99 x (100 -1)
D = 1 x 2 - 1 + 2 x 3 - 2 +...+ 99 x 100 - 99
D = 1x2 + 2 x 3 +...+ 99 x 100 - ( 1 + 2 +...+ 99)
Đặt A = 1x2 + 2 x 3 +...+ 99 x 100
B = 1 + 2 + ...+ 99
1x2 x 3 = 1x2x3
2x3x3 = 2x 3 x (4-1) = 2x3x4 - 1x2x3
3 x 4 x 3 = 3 x 4 x ( 5 - 2) = 3 x 4 x 5 - 2 x 3 x 4
................................................
99 x 100 x 3 = 99 x 100 x (101 - 98) = 99x100x101 - 98 x 99 x 100
Cộng vế với vế ta có: 3A = 99 x 100 x 101
A = 99 x 100 x 101 : 3 = 333300
B = 1 + 2 + 3 + ...+ 99
B = (99 + 1).[(99 -1):1 +1]:2 = 4950
E = 33300 - 4950 = 328350
a là cocaiconcac nhé e
b là cocaidaccau ok nhé
60x(7/12+4/15)
(1-1/2)x(1-1/3)x(1x1/4)x(1/5)
a: \(=60\cdot\dfrac{17}{20}=51\)
b: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}=\dfrac{1}{5}\)
A=1x2+2x3+3x4+...+49x50
B=1x3+3x5+5x7+...+99x101
C=1x2x3+2x3x4+3x4x5+...+50x51x52
D=1x4+2x5+3x6+...+60x63
E=1x1+2x2+3x3+...+50x50
F=1x1+3x3+5x5+...+71x71
G=1x1+4x4+7x7+...+100x100
I=1x2x3+3x4x5+5x6x7+...+69x70x71
A=1x2+2x3+3x4+...+49x50
3A= 3(1.2+2.3+3.4+...+49.50)
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3
3A= 1.2.(3-0)+2.3(4-1)+3.4(5-2)+...+49.50.(51-48)
3A= 0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51
3A= 49.50.51
A= 49.50.51/3=41650
B=1x3+3x5+5x7+...+99x101
B=1/1.3 +1/3.5 +...+1/99.101
2B=2/1.3 + 2/3.5 +...+2/99.101
2B=1-1/3+1/3-1/5+...+1/99-1/101
2B=1-1/101
2B=100/101
B=100/101:2=100/202
C=1x2x3+2x3x4+3x4x5+...+50x51x52
Nhân C với 4 ta được:
C x 4 = 1x2x3x4 + 2x3x4x 4 + 3x4x5x4 +…+50x51x52x4
C x 4 = 1x2x3x4 + 2x3x4x(5-1) + 3x4x5x(6-2) + ... + 50x51x52x(53-49)
C x 4 = 1x2x3x4 + 2x3x4x5 - 1x2x3x4 + 3x4x5x6 - 2x3x4x5 + ... +49x 50x51x52 - 50x51x52x53
Sau khi cộng - trừ giản ước ta có : C x 4 = 50x51x52x53
C = 50x51x52x53 : 4 = 1756950
Gọi x1; x2 là nghiệm của phương trình − 2 x 2 − 6 x − 1 = 0 . Không giải phương trình, tính giá trị của biểu thức N = 1 x 1 + 3 + 1 x 2 + 3
A. 6
B. 2
C. 5
D. 4
Phương trình −2 x 2 − 6x − 1 = 0 có = ( − 6 ) 2 – 4.(− 2).(−1) = 28 > 0 nên phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = − b a x 1 . x 2 = c a ⇔ x 1 + x 2 = − 3 x 1 . x 2 = 1 2
Ta có
N = 1 x 1 + 3 + 1 x 2 + 3 = x 1 + x 2 + 6 x 1 . x 2 + 3 x 1 + x 2 + 9 = − 3 + 6 1 2 + 3. − 3 + 9 = 6
Đáp án: A
Biến đổi mỗi biểu thức sau thành một phân thức đại số:
a) 1+1x1−1x1+1x1−1x; b) 1−2x+11−x2−2x2−11−2x+11−x2−2x2−1.
a) 1+1x1−1x1+1x1−1x =(1+1x):(1−1x)=x+1x:x−1x=x+1x.xx−1=x+1x−1=(1+1x):(1−1x)=x+1x:x−1x=x+1x.xx−1=x+1x−1
b) 1−2x+11−x2−2x2−11−2x+11−x2−2x2−1 =(1−2x+1):(1−x2−2x2−1)=(1−2x+1):(1−x2−2x2−1)
=x+1−2x+1:x2−1−(x2−2)x2−1=x+1−2x+1:x2−1−(x2−2)x2−1
=x−1x+1:x2−1−x2+2x2−1=x−1x+1:1(x−1)(x+1)=x−1x+1:x2−1−x2+2x2−1=x−1x+1:1(x−1)(x+1)
=x−1x+1.(x−1)(x+1)1=(x−1)2=x−1x+1.(x−1)(x+1)1=(x−1)2.
a) 1+1x1−1x1+1x1−1x =(1+1x):(1−1x)=x+1x:x−1x=x+1x.xx−1=x+1x−1=(1+1x):(1−1x)=x+1x:x−1x=x+1x.xx−1=x+1x−1 b) 1−2x+11−x2−2x2−11−2x+11−x2−2x2−1 =(1−2x+1):(1−x2−2x2−1)=(1−2x+1):(1−x2−2x2−1) =x+1−2x+1:x2−1−(x2−2)x2−1=x+1−2x+1:x2−1−(x2−2)x2−1 =x−1x+1:x2−1−x2+2x2−1=x−1x+1:1(x−1)(x+1)=x−1x+1:x2−1−x2+2x2−1=x−1x+1:1(x−1)(x+1) =x−1x+1.(x−1)(x+1)1=(x−1)2=x−1x+1.(x−1)(x+1)1=(x−1)2.