Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinh Lê Thành
Xem chi tiết
Dương
31 tháng 8 2019 lúc 22:24

Ta có:

x+4x + 4=  (x + 2)2

X- 4x + 4 = (x - 2)2

Suy ra, ta có Q = x + 2 + x - 2 = 2x

Phạm Thị Thùy Linh
31 tháng 8 2019 lúc 22:25

\(Q=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)

\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-2\right)^2}\)

\(=|x+2|+|x-2|\)

\(=|x+2|+|2-x|\ge|x+2+2-x|=4\)

\(\Rightarrow Q_{min}=4\)\(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)

Th1 : \(\hept{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le}2}\)

Th2 : \(\hept{\begin{cases}x+2< 0\\2-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>2\end{cases}\Rightarrow}x\in\varnothing}\)

Vậy \(Q_{min}=4\Leftrightarrow-2\le x\le2\)

ĐẶNG QUỐC SƠN
Xem chi tiết
dinh huong
Xem chi tiết
dinh huong
25 tháng 11 2021 lúc 19:52

\(4x^2+9y^2=1\) nha mn

Nàng tiên cá
Xem chi tiết
Trần Thanh Phương
2 tháng 7 2019 lúc 18:50

Ngại làm lần 2 quá bạn ơi 

Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến

chi mai Nguyen
Xem chi tiết
Khánh Ngọc
7 tháng 9 2020 lúc 21:16

\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)

\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)

Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
7 tháng 9 2020 lúc 21:04

Bài 1 :

ĐKXĐ : \(x\ge2\)

\(2x+5=6\sqrt{2x-4}\)

\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)

\(\Leftrightarrow4x^2+20x+25-72x+144=0\)

\(\Leftrightarrow4x^2-52x+159=0\)

Đến đây chịu :))

Khách vãng lai đã xóa
KCLH Kedokatoji
7 tháng 9 2020 lúc 21:08

Đến đấy thì tính delta tiếp thôi mừ :>)

Khách vãng lai đã xóa
dinh huong
Xem chi tiết
Daffodil Clover
Xem chi tiết
Girl
8 tháng 5 2019 lúc 15:21

\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)

\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)

\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)

\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)

\("="\Leftrightarrow x=3\)

Duyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
17 tháng 9 2020 lúc 6:46

Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)

\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)

\(A=\left|x+1\right|+\left|x-2\right|\)

\(A=\left|x+1\right|+\left|2-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)

Đẳng thức xảy ra khi ab ≥ 0

=> ( x + 1 )( 2 - x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)

2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )

=> MinA = 3 <=> \(-1\le x\le2\)

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Trinh
Xem chi tiết