tìm GTNN của:
A= \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
tìm GTNN của \(Q=\sqrt{\left(x^2+4x+4\right)}+\sqrt{x^2-4x+4}\)
Ta có:
x2 +4x + 4= (x + 2)2
X2 - 4x + 4 = (x - 2)2
Suy ra, ta có Q = x + 2 + x - 2 = 2x
\(Q=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)
\(=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(=|x+2|+|x-2|\)
\(=|x+2|+|2-x|\ge|x+2+2-x|=4\)
\(\Rightarrow Q_{min}=4\)\(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
Th1 : \(\hept{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le}2}\)
Th2 : \(\hept{\begin{cases}x+2< 0\\2-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>2\end{cases}\Rightarrow}x\in\varnothing}\)
Vậy \(Q_{min}=4\Leftrightarrow-2\le x\le2\)
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
cho x,y không âm thỏa mãn \(4x^2+9y^2\)
Tìm GTNN của P=\(\sqrt{4+10x}+\sqrt{4+15y}\)
Tìm GTNN của biểu thức:
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(B=\sqrt{x^2+4x+4}+\sqrt{x^2+6x+9}\)
Ngại làm lần 2 quá bạn ơi
Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến
\(2x+5=6\sqrt{2x-4}\)
Giải pt
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}\)
Rút gọn Q
Tìm GTNN của Q
\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)
\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)
Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)
Bài 1 :
ĐKXĐ : \(x\ge2\)
\(2x+5=6\sqrt{2x-4}\)
\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)
\(\Leftrightarrow4x^2+20x+25-72x+144=0\)
\(\Leftrightarrow4x^2-52x+159=0\)
Đến đây chịu :))
Đến đấy thì tính delta tiếp thôi mừ :>)
cho x,y không âm thỏa mãn \(4x^2+9y^2=1\)
Tìm GTNN của P=\(\sqrt{4+10x}+\sqrt{4+15y}\)
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Tìm GTNN của biểu thức :
\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
Đặt \(A=\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}\)
\(A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(A=\left|x+1\right|+\left|x-2\right|\)
\(A=\left|x+1\right|+\left|2-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(A=\left|x+1\right|+\left|2-x\right|\ge\left|x+1+2-x\right|=\left|3\right|=3\)
Đẳng thức xảy ra khi ab ≥ 0
=> ( x + 1 )( 2 - x ) ≥ 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+1\ge0\\2-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\-x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le2\end{cases}}\Leftrightarrow-1\le x\le2\)
2. \(\hept{\begin{cases}x+1\le0\\2-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\-x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge2\end{cases}}\)( loại )
=> MinA = 3 <=> \(-1\le x\le2\)
Bài 1 : Cho \(\sqrt{x^2-5x+14}+\sqrt{x^2-5x+10}=2\) Tính giá trị biểu thức M = \(\sqrt{x^2-5x+10}+\sqrt{x^2-5x+10}\)
Bài 2 : Tìm GTNN của : Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)