ta có : \(A=\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-2\right)^2}\)
\(=\left|x+2\right|+\left|x-2\right|=\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+2\ge0\\2-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le2\end{matrix}\right.\Leftrightarrow-2\le x\le2\)
vậy GTNN của \(A\) là \(4\) khi \(-2\le x\le2\)