Tìm n sao cho:
a, n3+2018n=20192018+2
b, n3+2018n -1 = 20192
chứng minh rằng không có số tựn nhiên nào thỏa mãn hệ thức
n3 + 2018n = 20192018+ 1
Giả sử tồn tại n thoả mãn đề bài.
Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.
Do đó \(n^3+2018n⋮4\).
Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).
Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.
Vậy không tồn tại n thoả mãn đề bài.
Tìm số tự nhiên n sao cho:
S(n)=n^2 - 2018n +11
Nếu n= 0 thì không thỏa mản.
Nếu 1 ≤ n ≤2017 thì
S(n)=n^2 - 2018n +11 < n2 - 2018n +2017
Mà n2 - 2018n +2017 =(n-1)(n-2017)≤ 0 (loại)
Nếu n=2018 thì S(n) = 11,thỏa mãn.
Nếu n > 2018 thì
n-2018 ≥ 1 ⟹n2 - 2018n ≥ n
⟹ n2 - 2018n +11>n2 - 2018n
⟹S(n) > n (loại).Vậy n=2018
Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).
Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).
Từ đó suy ra không tồn tại n thoả mãn đề bài.
Tìm số tự nhiên n sao cho:
n^2 + 2018n + 2017 là hợp số
Tìm số tự nhiên n sao cho:
n^2 + 2018n + 2017 là số nguyên tố
Tìm số nguyên n sao cho \(n^3+2018n=2020^{2019}+4\)
Ta có : \(n^3+2018n=n\left(n^2-1+2019\right)=\left(n-1\right)n\left(n+1\right)+2019n⋮3\forall n\inℤ\) (*)
Lại có : \(2020\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
Và : \(4\equiv1\left(mod3\right)\)
Do đó : \(2020^{2019}+4\equiv2\left(mod3\right)\)
hay \(2020^{2019}+4⋮̸3\) . Điều này mâu thuẫn với (*)
Do đó, không tồn tại số nguyên n thỏa mãn đề.
Cho n=2^2020 -2^2019-2^2018-...-2-1 . Tính giá trị biểu thức: A=2018n – 2019n + 2020n.
Ta có:
n = \(2^{2020}-2^{2019}-2^{2018}-...-2-1\)
=> 2n = \(2^{2021}-2^{2020}-2^{2019}-2^{2018}-...-2^2-2\)
=> 2n - n = \(2^{2021}-2^{2020}-2^{2020}+1\)
=> \(n=2^{2021}-2.2^{2020}+1=1\)
=> \(A=2018.1-2019.1+2020.1=2019\)
Thanks nguyễn linh chi nha
Tìm số nguyên n sao cho n^3-2018n-4=2020^2019
Tìm số nguyên n sao cho n^3 + 2018n = 2020^2019 + 4
Mình đang cần gấp ai giải được thì giải chi tiết giúp mình nha