Dùng kí hiệu viết lại Mọi số tự nhiên đều chia hết cho 2
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số tự nhiên đều lớn hơn 0.
Dùng kí hiệu “\(\forall \)” hoặc “\(\exists \)” để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
b) Mọi số thực cộng với 0 đều bằng chính nó.
a) \(\exists x \in \mathbb{Z},\;x \not{\vdots} \;x.\)
b) \(\forall x \in \mathbb{R},\;x + 0 = x.\)
CMR:
A) mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
B)Hiệu giữa có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
a) aaa = 111.a = 37.3.a chia hết cho 37
b) 1ab1 - 1ba1 = 1001 + 10ab - 1001 - 10ba = 10ab - 10ba = 10( 10a + b ) - 10 ( 10 b + a ) = 90a - 90b = 90 ( a-b ) chia hết cho 90.
Dùng kí hiệu \(\forall ,\exists \) để viết các mệnh đề sau:
P: “Mọi số tự nhiên đều có bình phương lớn hơn hoặc bằng chính nó”
Q: “Có một số thực cộng với chính nó bằng 0”
P: "\(\forall n \in \mathbb N,\;{n^2} \ge n".\)
Q: "\(\exists \;a \in \mathbb R,\;a + a = 0".\)
Chứng minh rằng :
a) Mọi số tự nhiên có ba chữ số giống nhau đều chia hết cho 37
b) hiệu giữa số có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
a)
Gọi số tự nhiên có 3 chữ số giống nhau là bbb (b khác 0; b< 10)
Ta có:
bbb = b . 111 = b . 37 .3
=> b chia hết cho 37
Vậy mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37
b)
Ta có
1ab1 = 1000 + a .100 + b .10 + 1
1ba1 = 1000+ b .100 +a .10 +1
1ab1-1ba1 = 1000 + a .100 + b .10 + 1 - 1000 + b.100 + a .10 + 1
1ab1-1ba1 = 1001+a .100+ b.10 - 1001 + b .100 + a .10
1ab1 -1ba1 = a .100+ b.10 - b .100+ a.10
1ab1 -1ba1 = a.(100- 10) - b .( 100-10)
1ab1 - 1ba1 = a .90 - b .90
1ab1-1ba1 = 90(a-b)
=> 1ab1 -1ba1 chia hết cho 90
Vậy hiệu giữa số có dạng 1ab1 và số được viết bởi chính các chữ số đó nhưng theo thứ tự ngược lại thì chia hết cho 90
A)Tìm số tựu nhiên có ba chữ số, biết rằng số đó vừa chia hết cho 5 vừa chia hết cho 9 hiệu giữa số đó với số có ba chữ số viết theo thứ tự ngược lại bằng 396. B)Cứng tỏ 3n + 2 là phân số tối giản với 2n + 1 mọi số tự nhiên n.
ọi số cần tìm là abc thì số viết theo thứ tự ngược lại là cba
(a≠0;a,b,c<10;a,b,c∈N)(�≠0;�,�,�<10;�,�,�∈�)
Theo đề bài : abc - cba = 396
Đây là phép trừ có nhớ sang hàng trăm nên
a - 1 - c = 2 hay a - c = 3 hay a = c + 3
Vì abc chia hết cho 5 nên c = 0 hoặc c = 5
* Với c = 0 thì a = 3
Mà abc chia hết cho 9 nên ab0 chia hết cho 9 →→b = 6
: 369* Với c = 5 thì a = 8 nên ta có : 8b5 mà phải chia hết cho 9 nên b = 5
Thử :
Vậy có hai số thoả mãn đề bài :
mấy cái mk bỏ trống bạn tự làm vì bạn học rồi với lại bạn ko đc ăn sẵn
Tìm số tự nhiên x, y biết 32xy ( 32xy là một số tự nhiên nhé. Tại mk ko viết đc kí hiệu trên máy ) chia hết cho 45
Ta có : \(2^{2013}=\left(2^3\right)^{671}=8^{671}\)
Ta lại có : \(3^{1344}=\left(3^2\right)^{672}=9^{672}\)
Mà : \(8^{671}< 9^{672}\)
\(\Rightarrow2^{2013}< 3^{1344}\)
k mk nha
thank you very much
cho tập hợp các số tự nhiên chia hết cho 3 mà nhỏ hơn 50
cho tập hợp các số tự nhiên chia hết cho 6 mà nhỏ hơn 50
cho tập hợp các số tự nhiên chia hết cho 9 mà nhỏ hơn 50
dùng kí hiệu \(\subset\) để chỉ mối quan hệ giữa các tập hợp
Gọi tập hợp thứ nhất là A ;
tập hợp thứ hai là B ;
tập hợp thứ ba là C .
\(C\subset B;B\supset C\);\(B\subset A;A\supset B\);\(C\subset A;A\supset C\)
Chứng minh rằng:
a) Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
b( Tích của 2 số tự nhiên liên tiếp luôn cha hết cho 2
c) Hiệu của số có 2 chữ số với số viết theo thứ tự ngược lại chia hết cho 9
d)Tổng của số có 2 chữ số và số viết theo ngược lại chia hết cho 11
a ( a + 1 )
. A chẵn ---) a (a + 1 ) chia hết cho 2
. A lẽ -->> A khg chia hết cho 2 --->> A chia 2 dư 1 -------> a-1 chia hết cho 2 ---> a ( a + 1 ) chia hết 2