Cho hình chữ nhật ABCD. Điểm E thuộc AC. QUa E kẻ đường song song vs BD cắt AD và và CD ở M,N. Vẽ hình chữ nhật MDNE. Chứng minh :
a) DF // AC
b) E là trung điểm BF
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo AC. Qua E kẻ đường thẳng song song với BD cắt AD, CD lần lượt tại M và N. Vẽ hình chữ nhật MDNF. Chứng minh: a) DF song song với AC. b) E là trung điểm của BF.
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo AC. Qua E kẻ đường thẳng song song với BD cắt AD, CD lần lượt tại M và N. Vẽ hình chữ nhật MDNF. Chứng minh:
a) DF song song với AC.
b) E là trung điểm của BF.
Answer:
a) Gọi I và J là giao điểm các đường chéo của hình chữ nhật MDNF và hình chữ nhật ABCD
Tam giác IND và tam giác JCD là các tam giác cân \(\Rightarrow\widehat{N_1}=\widehat{D_1}\) và \(\widehat{C_1}=\widehat{D_2}\)
Mặt khác \(\widehat{N_1}=\widehat{D_2}\) (Hai góc đồng vị)
Vậy \(\widehat{C_1}=\widehat{D_1}\Rightarrow DF//AC\)
b) Tứ giác EIDJ là hình bình hành vì có các cạnh đối song song
Có: EJ = ID nhưng IF = ID \(\Rightarrow IF=EJ\)
Từ đó tứ giác EFIJ là hình bình hành \(\Rightarrow FE=IJ\left(1\right)\)
Mặt khác trong tam giác FBD: có FB // IJ (2)
Từ (1) và (2) => điểm E, điểm B, điểm F thẳng hàng
Mà EF = IJ và EB = IJ
=> E là trung điểm BF
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo AC . Qua E kẻ đường thẳng song song với BD cắt AD, CD lần lượt là M và N , vẽ hình chữ nhật MDNF , cm
a, DF//AC
b . E là trung điểm của BF
a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:
AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)
Từ hai tỉ số trên, ta có:
AC/AD = BE/BD
Vậy, ta đã chứng minh được AF // BD.
b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:
CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)
Vậy, ta đã chứng minh được E là trung điểm CF.
Cho hình chữ nhật ABCD và điểm E thuộc đường chéo BD. Qua E kẻ đường thẳng song song với AC cắt AD, BA lần lượt tại M, N. Vẽ hình chữ nhật MANF. a) CM: AF song song BD b) CM: E là trung điểm của CF
Cho hình chữ nhật ABCD, E thuộc AC. Đường thẳng qua E song song với BD cắt các đường thẳng AD, CD lần lượt tại M, N. Vẽ hình chữ nhật DMFN. Gọi O, I lần lượt là giao điểm 2 đường cheo của 2 hình chữ nhật ABCD, DFMN. Chứng minh rằng:
a) Tứ giác EIDO là hình bình hành
b) E là trung điểm BF.
mk làm qua nha!
DB//ME nên \(\widehat{M_1}=\widehat{D_1}\)
suy ra \(\widehat{M_1}=\widehat{D_1}=\widehat{D_2}=\widehat{A_1}\)
suy ra AC//DF Mà DO//ME suy ra DOEI là hbh
b, lấy E' là giao của FB và AC
Bằng tính chất đường trung bình chứng minh E' là TĐ của FB (1)
kẻ DH// EF nha ko phải vuông góc đâu
Chứng minh EF=DH=EB(2)
gợi ý: sử dụng t/c hbh DHEF suy ra EF=DH
cm \(\Delta DHO=\Delta BEO\left(g.c.g\right)\)suy ra DH=EB
Từ 1 và 2 suy ra E trùng E' (cùng thuộc AC và EB=EF; E'B=E'F)
suy ra E là TĐ của FB
có gì ko hiểu thì nhắn tin hỏi mk nha!
Cho hình chữ nhật ABCD. Điểm E \(\in\)AC, qua E kẻ đường thẳng song song với BD cắt AD, CD lần lượt tại M, N. Vẽ hình chữ nhật MDNF. Chứng minh rằng:
a) DF//AC
b) E là trung điểm của BF
Cho hình chữ nhật abcd. Trên ab lấy e, qua e kẻ đường thẳng song song với cd cắt ad và cd tại m và n. Vẽ hình chữ nhật mdnf
a. Chứng minh df song song với ac
b. E là trung điểm của fb
Ai giải hộ tôi.với tôi đang cần gấp, xin cảm ơn
Cho hình chữ nhật ABCD, qua điểm E trên đường chéo AC. Kẻ đường thẳng song song với BD cắt cạnh AD và phần kéo của CD tại M và N. Vẽ hình chữ nhật DMEN
Cm: a, FD // AC
b, E là trung điểm của FB