Tìm GTLN hoặc GTNN:
C=\(|x-4|\cdot\left(2-|x-4|\right)\)
Tìm giá trị của biểu thức : \(C=\frac{4x^4+1}{4\left(x+1\right)^2+1}\cdot\frac{4\left(x+2\right)^4+1}{4\left(x+3\right)^4+1}\cdot\cdot\cdot\frac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)
TÌM x
\(\left(\left(\frac{3}{4}\cdot x+5\right)-\left(\frac{2}{3}\cdot x-4\right)-\left(\frac{1}{6}\cdot x+1\right)\right)=\left(\frac{1}{3}\cdot x+4\right)-\left(\frac{1}{3}-3\right)\)
\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3
\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)
=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)
\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)
\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)
\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
tìm GTNN hoặc GTLN của
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(\left(x-4\right)^2+\left(x-5\right)^2\)
\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)
\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)
nên \(2\left(x-\frac{9}{2}\right)\ge0\)
do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)
Tìm GTLN của biểu thức sau
a,\(A=11-10x-x^2\)
b,\(B=\left|x-4\right|\cdot\left(2-\left|x-4\right|\right)\)
Giúp mình với, mình đang cần gấp, cảm ơn các bạn trước nha
Phân tích đa thức thành nhân tử
a)\(x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)
b)\(\left(x^2-x+2\right)^2+4\cdot x^2-4\cdot x-4\)
c)\(\left(x+2\right)\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+8\right)+16\)
a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)
Đặt \(k=x^2-x+2\) thì biểu thức có dạng
k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)
c)làm tương tự câu a
Phân tích thành nhân tử ;
1, \(\left(x+2\right)\cdot\left(x+3\right)\cdot\left(x+4\right)\cdot\left(x+5\right)-24\)
2, \(x\cdot\left(x+4\right)\cdot\left(x+6\right)\cdot\left(x+10\right)+128\)
3, \(\left(x^2+5x+6\right)\cdot\left(x^2-15x+56\right)-144\)
4, \(\left(x-18\right)\cdot\left(x-7\right)\cdot\left(x+35\right)\cdot\left(x+90\right)-67x^2\)
5, \(\left(x-2\right)\cdot\left(x-3\right)\cdot\left(x-4\right)\cdot\left(x-6\right)-72x^2\)
1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)
hay (x2+7x+6)(x2+7x+16)
2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128
Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)
hay (x2+10x+8)(x2+10x+16)
3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144
Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)
Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
bài 1: tìm x, biết
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\frac{30}{62}\cdot\frac{31}{64}=2^x\)
bài 2:
cho: p = \(\left(x-4\right)^{\left(x-5\right)^{\left(x-6\right)^{\left(x+5\right)}}}\)
tính p(x)=7
giúp mk vs!!!!!
mk cần gấp!!
Bài làm:
Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
mk cần cả giải thích
giúp mk vs!!!
tìm \(x\in Z\)thỏa mãn\(\left(x^2-1\right)\cdot\left(x^2-4\right)\cdot\left(x^2-7\right)\cdot\left(x^2-10\right)< 0\)