Cho x+y+z=0 tính giá trị biểu thức P=x²/yz+y²/xz+z²/xy
Cho xy + yz + xz = 0
Tính giá trị biểu thức sau : M = ( x+y )( y+z )( x+z ) + xyz
Cho 1/x +1/y+1/z=0, tính giá trị biểu thức A= yz/x^2+ xz/y^2+xy/z^2
Ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
\(\Rightarrow\dfrac{1}{z}=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\left(\dfrac{1}{z}\right)^3=-\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3\)
\(\Rightarrow\dfrac{1}{z^3}=-\left(\dfrac{1}{x^3}+3\cdot\dfrac{1}{x^2}\cdot\dfrac{1}{y}+3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y^2}+\dfrac{1}{y^3}\right)\)
\(\Rightarrow\dfrac{1}{z^3}=-\dfrac{1}{x^3}-\dfrac{3}{x^2y}-\dfrac{3}{xy^2}-\dfrac{1}{y^3}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=-3\cdot\dfrac{1}{x}\cdot\dfrac{1}{y}\cdot-\dfrac{1}{z}\)
\(\Rightarrow\dfrac{1}{z^3}+\dfrac{1}{x^3}+\dfrac{1}{y^3}=3\cdot\dfrac{1}{xyz}\)
\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=3\)
\(\Rightarrow\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}=3\)
\(\Rightarrow\dfrac{yz}{x^2}+\dfrac{xz}{y^2}+\dfrac{xy}{z^2}=3\)
Vậy \(A=3\)
cho 1/x+1/y+1/z=0. tính giá trị biểu thức c=xy/z^2+yz/x^2+xz/y^2
giúp trả lời gấp
Giả thiết tương đương xy + yz + zx = 0.
Từ đó dễ dàng chứng minh được \(\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3=3xy.yz.zx=3x^2y^2z^2\Leftrightarrow\dfrac{\left(xy\right)^3+\left(yz\right)^3+\left(zx\right)^3}{3x^2y^2z^2}=\dfrac{xy}{z^2}+\dfrac{yz}{x^2}+\dfrac{zx}{y^2}\).
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính giá trị của biểu thức A=(yz/x^2+yz)+(xz/y^2+2xz)+(xy/z^2+2xy)
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)Cho các số thực x,y,z\(\ne\)0(sau). Tính giá trị biểu thức M\(=\frac{x^{^2}+y^2+z^2}{xy+yz+xz}\). Giúp mình với.
\(x;y;z\ne0\). Giả thiết của đề bài:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{z+x}\Leftrightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{x}+\frac{1}{z}\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}.\)
=> x = y = z
Do đó, M = 1.
cho x,y,z khác 0 và x+y+z=0, xy+yz+zx=3xyz Tính giá trị biểu thức A= (yz-x)/(x^3yz)+(xz-y)/(xy^3z)+(xy-z)/(xyz^3)
Cho x,y,z là các số thực khác 0 thỏa mãn: xy+ yz+ xz=0.
Tính giá trị biểu thức:
M=\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
\(M=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(yz+xz\right)^3+x^3y^3-3xy^2z^3-3x^2yz^3}{x^2y^2z^2}\)
\(=\frac{\left(yz+xz+xy\right)\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)
\(=\frac{0.\left[\left(yz+xz\right)^2+xy\left(yz+xz\right)+x^2y^2\right]-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}\)
\(=\frac{-3xyz^2\left(xz+yz\right)}{x^2y^2z^2}=\frac{-3\left(xz+yz\right)}{xy}=\frac{-3.\left(-xy\right)}{xy}=3\)
Cho các số thực x,y,z khác 0 thoả mãn :\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức : M = \(\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Cho các số thực x, y, z \(\ne\)0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)
Tính giá trị của biểu thức \(M=\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Từ đề <=>\(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+zy}\Leftrightarrow xz=xy=zy\)
Có : \(zx=xy\Rightarrow y=z\left(\text{Vì }x\ne0\right),xy=zy\Rightarrow x=z\)
=> x=y=z
tự tính M :]]
Cho x,y,z là ba số khác 0 và x+y+z=0. Tính giá trị của biểu thức:
\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
\(x^2+y^2-z^2=x^2+\left(y-z\right)\left(y+z\right)=x^2-x\left(y-z\right)=x\left(x-y+z\right)=x\left(-y-y\right)=-2xy\)
Tương tự \(x^2+z^2-y^2=-2xz;y^2+z^2-x^2=-2yz\)
Cộng VTV:
\(\Leftrightarrow\text{Biểu thức }=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}=-\dfrac{1}{8}\)