Cho tam giác ABC trung tuyến AM .Chứng minh \(AC^2+AC^2=2AM^2+\dfrac{BC^2}{2}\)
Cho tam giác ABC trung tuyến AM. Chứng minh: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
Cho tam giác ABC có đường cao AH và trung tuyến AM. Chứng minh rằng:
a. |AB^2 - AC^2| = 2BC.MH
b. AB^2 + AC^2 = 2AM^2 + BC^2/2
Cho tam giác ABC có đường cao AH và trung tuyến AM. Chứng minh rằng:
a. |AB^2 - AC^2| = 2BC.MH
b. AB^2 + AC^2 = 2AM^2 + BC^2/2
Chứng minh công thức độ dài đường trung tuyến bằng bài toán sau:
TAm giác ABC trung tuyến AM đường cao AH. Chứng minh AC^2 + AB^2 = 2AM^2 + BC^2/2
Cho tam giác ABC , trung tuyến AM. Chứng minh AB^2+AC^2=2AM^2+BC^2/2
Cho tam giác ABC nhọn AH là đường cao ,trung tuyến AM .Chứng minh rằng :
a.BC2=AB2+AC2-2AB.AH
b. \(2AM^2+\dfrac{BC^2}{2}=AB^2+AC^2\)
a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:
Cho tam giác ABC, có trung tuyến AM, C/M: 2AM^2=AB^2+AC^2 - 1/2.BC^2
Cho tam giác ABC có AB > AC kẻ trung tuyến AM,đường cao AH .Chứng minh các hệ thức:
a) \(AB^2+AC^2=\frac{BC^2}{2}+2AM^2\)
b) \(AB^2-AC^2=2BC.HM\)(AC>AB)
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM