Cơ hội tiếp theo dành cho các bạn:
Thực hiện phép tính sau (ghi kết quả thôi nha các bn):
\(15\cdot\left(-2\right)\cdot\left(-5\right)\cdot\left(-6\right)=\)
Tính tích và viết kết quả ở dạng phân số tối giản:
a) \(\dfrac{-5}{9}\cdot\dfrac{12}{35};\)
b) \(\left(-\dfrac{5}{8}\right)\cdot\dfrac{-6}{55};\)
c) \(\left(-7\right)\cdot\dfrac{2}{5};\)
d) \(\dfrac{-3}{8}\cdot\left(-6\right).\)
\(a.\)
\(-\dfrac{5}{9}\cdot\dfrac{12}{35}=\dfrac{\left(-5\right)\cdot12}{9\cdot35}=\dfrac{-60}{315}=-\dfrac{4}{21}\)
\(b.\)
\(\left(-\dfrac{5}{8}\right)\cdot-\dfrac{6}{55}=\dfrac{\left(-5\right)\cdot\left(-6\right)}{8\cdot55}=\dfrac{30}{440}=\dfrac{3}{44}\)
\(c.\)
\(\left(-7\right)\cdot\dfrac{2}{5}=-\dfrac{14}{5}\)
\(d.\)
\(-\dfrac{3}{8}\cdot\left(-6\right)=\dfrac{-3\cdot\left(-6\right)}{8}=\dfrac{18}{8}=\dfrac{9}{4}\)
a) \(\dfrac{-5}{9}.\dfrac{12}{35}=\dfrac{-5.12}{9.35}=\dfrac{-4}{21}\)
b) \(\dfrac{-5}{8}.\dfrac{-6}{55}=\dfrac{-5.-6}{8.55}=\dfrac{3}{44}\)
c)\(-7.\dfrac{2}{5}=\dfrac{-7.2}{5}=\dfrac{-14}{5}\)
d) \(\dfrac{-3}{8}.-6=\dfrac{-3.-6}{8}=\dfrac{9}{4}\)
Thực hiện các phép tính sau:
a, \(\left(\sqrt{6}+\sqrt{2}\right)\cdot\left(\sqrt{3}-2\right)\cdot\sqrt{\sqrt{3}+2}\)
b, \(\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
c, \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)
d, \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
TÍNH
\(C=\left(1+\frac{2}{3}\right)\cdot\left(1+\frac{2}{5}\right)\cdot\left(1+\frac{2}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1+\frac{2}{2015}\right)\cdot\left(1+\frac{2}{2017}\right)\)
\(D=\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{6}\right)\cdot\left(1-\frac{1}{10}\right)\cdot\left(1-\frac{1}{15}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{780}\right)\)
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
Viết kết quả mỗi phép tính sau dưới dạng luỹ thừa của \(a\) :
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3}\) với \(a = \frac{8}{9};\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25\) với \(a = 0,25\);
c) \({( - 0,125)^6}:\frac{{ - 1}}{8}\) với \(a = - \frac{1}{8};\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2}\) với \(a = \frac{{ - 3}}{2}\).
a) \({\left( {\frac{8}{9}} \right)^3} \cdot \frac{4}{3} \cdot \frac{2}{3} = {\left( {\frac{8}{9}} \right)^3}.\frac{8}{9} = {\left( {\frac{8}{9}} \right)^{3+1}}={\left( {\frac{8}{9}} \right)^4}\)
b) \({\left( {\frac{1}{4}} \right)^7} \cdot 0,25 = {\left( {0,25} \right)^7}.0,25 ={\left( {0,25} \right)^{7+1}}= {\left( {0,25} \right)^8}\)
c) \({( - 0,125)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^6}:\frac{{ - 1}}{8} = {\left( {\frac{{ - 1}}{8}} \right)^{6-1}}= {\left( {\frac{{ - 1}}{8}} \right)^5}\)
d) \({\left[ {{{\left( {\frac{{ - 3}}{2}} \right)}^3}} \right]^2} = {\left( {\frac{{ - 3}}{2}} \right)^{3.2}} = {\left( {\frac{{ - 3}}{2}} \right)^6}\)
thực hiện phép tính
A=\(\frac{5\cdot\left(2^2\cdot3^2\right)^9\cdot\left(2^2\right)^6-2\cdot\left(2^2\cdot3\right)^{14}\cdot3^4}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{29}\cdot3^{18}}\)
A =\(\frac{5\cdot\left(2^2\cdot3^2\right)^9\cdot\left(2^2\right)^6-2\cdot\left(2^2\cdot3\right)^{14}}{5\cdot2^{28}\cdot3^{18}-7\cdot2^{29}\cdot3^{18}}\cdot3^4\)
Hãy thực hiện phép tính
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
Tính: \(A=\left(0,25\right)^{-1}\cdot\left(\frac{1}{4}\right)^{-2}\cdot\left(\frac{4}{3}\right)^{-2}\cdot\left(\frac{5}{4}\right)^{-1}\cdot\left(\frac{2}{3}\right)^{-3}\)
kết bn vs mk nhé, mk thấy cô đơn lắm! :((( T_T
\(\frac{5^{^2}\cdot6^{11}\cdot\left(-16\right)^2+6^2\cdot\left(-12\right)^6\cdot\left(-15\right)^2}{2\cdot\left(-6\right)^{12}\cdot10^4-81^{2\cdot960^3}}\)
Tính hộ mình với