So sánh
\(\sqrt{27}+\sqrt{6}+1\) và \(\sqrt{48}\)
18 và \(\sqrt{15}.\sqrt{17}\)
1) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk vs ah mk cần gấp
b: Ta có: \(4\sqrt{5}=\sqrt{4^2\cdot5}=\sqrt{80}\)
\(5\sqrt{3}=\sqrt{5^2\cdot3}=\sqrt{75}\)
mà 80>75
nên \(4\sqrt{5}>5\sqrt{3}\)
So sánh:
\(\sqrt{8}+3\)và \(6+\sqrt{2}\)
\(14\)và \(\sqrt{13}.\sqrt{15}\)
\(\sqrt{27}+\sqrt{6}+1\) và \(\sqrt{48}\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~
so sánh :\(\sqrt{27} + \sqrt{6} +1\) và \(\sqrt{48}\)
So sánh \(\sqrt{27}+\sqrt{6}+1\) và \(\sqrt{48}\)
\(\sqrt{27}+\sqrt{6}+1< \sqrt{48}\)
So sánh \(\sqrt{27}+\sqrt{6}+1\) và \(\sqrt{48}\)
ta có: \(\sqrt{27}+\sqrt{6}+1=3\sqrt{3}+\sqrt{6}+1\)(1))
\(\sqrt{48}=4\sqrt{3}=3\sqrt{3}+\sqrt{3}\)(2)
ta lại có: \(\sqrt{6}>\sqrt{3}\Rightarrow\sqrt{6}+1>\sqrt{3}\) (3)
từ (1)(2)và(3)\(\Rightarrow3\sqrt{3}+\sqrt{6}+1>3\sqrt{3}+\sqrt{3}\)
\(\Leftrightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
1) có bao nhiêu giá trị nguyên của x để biểu thức
\(M=\sqrt{x+4}+\sqrt{2-x}\) có nghĩa
2) so sánh
a) \(\sqrt{33}-\sqrt{17}\) và \(6-\sqrt{15}\)
b) \(4\sqrt{5}\) và \(5\sqrt{3}\)
c) \(\sqrt{3\sqrt{2}}\) và \(\sqrt{2\sqrt{3}}\)
d) \(\sqrt{10}+\sqrt{17}+1\) và \(\sqrt{61}\)
giúp mk nhé mk cần gấp
Bài 1:
Để M có nghĩa thì \(\left\{{}\begin{matrix}x+4\ge0\\2-x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\le2\end{matrix}\right.\Leftrightarrow-4\le x\le2\)
Số giá trị nguyên thỏa mãn điều kiện là:
\(\left(2+4\right)+1=7\)
Bài 1: Tính
A=\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\)
B=\(\sqrt{13-\sqrt{160}-\sqrt{53+4\sqrt{90}}}\)
C=\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
D=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
E= \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
F= \(\sqrt{3+\sqrt{11+6\sqrt{2}}}-\sqrt{5+2\sqrt{6}}\)
G=\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Bài 2: so sánh
a) \(\sqrt{24}+\sqrt{45}\) và 12
b) \(\sqrt{37}-\sqrt{15}\) và 2
c) \(\sqrt{16}\) và \(\sqrt{15}\times\sqrt{17}\)
d) 8 và \(\sqrt{15}+\sqrt{17}\)
Bài 2 :
a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)
b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)
c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)
So sánh A = \(\sqrt{17}-\sqrt{15}\) và B = \(\sqrt{15}-\sqrt{13}\)
\(A=\dfrac{2}{\sqrt{17}+\sqrt{15}}\) ; \(B=\dfrac{2}{\sqrt{15}+\sqrt{13}}\)
Mà \(\sqrt{17}+\sqrt{15}>\sqrt{15}+\sqrt{13}>0\)
\(\Rightarrow\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{15}+\sqrt{13}}\)
\(\Rightarrow A< B\)
\(A=\sqrt{17}-\sqrt{15}=\dfrac{2}{\sqrt{17}+\sqrt{15}}\)
\(B=\sqrt{15}-\sqrt{13}=\dfrac{2}{\sqrt{13}+\sqrt{15}}\)
mà \(\dfrac{2}{\sqrt{17}+\sqrt{15}}< \dfrac{2}{\sqrt{13}+\sqrt{15}}\)
nên A<B
Câu 1: Thực hiện phép tính
\(a,\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\cdot\sqrt{3}\\ b,\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\\ c,2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
Câu 2: Rút gọn
\(a,\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}\\ b,\frac{3\sqrt{8}+2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\\ c,\left(4+\sqrt{15}\right)\cdot\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
Câu 3:So sánh
\(a,3+\sqrt{5}và2\sqrt{2}+\sqrt{6}\\ b,2\sqrt{3}+4và3\sqrt{2}+\sqrt{10}\\ c,18và\sqrt{15}\cdot\sqrt{17}\)