Hãy liệt kê các phần tử:
B={x€Z/ x(x-1)(x+2)(2x-3)=0
C={x€N/x+3 lớn hơn hoặc bằng 9
D={x€Z/ |x|<4
Viết lại tập hợp sau bằng cách liệt kê
a) A={x€N/2x+1bé hơn hoặc bằng 6}
b) B={x€Z/x^2 - 6x+5=0}
c)C={x€N/(1+x)(2x^2+5x+2)=0}
d) D={x€Z/x=2K với K€N,Kbes hơn hoặc bằng 3
e) E={x€Q / x = 1 phần n 3 với n€N,x lớn hơn hoặc bằng1/81
a: 2x+1<=6
=>2x<=5
=>x<=5/2
=>A={0;1;2}
b: B={1;5}
c: \(C=\varnothing\)
d: D={0;2;4;6}
Bài 1. Liệt kê các phần tử của tập hợp sau:
a) A = {x Î N | x < 6} b) B = {x Î N | 1 < x £ 5}
c) C = {x Î Z , |x| £ 3} d) D = {x Î Z | x2 - 9 = 0}
e) E = {x Î R | (x - 1)(x2 + 6x + 5) = 0} f) F = {x Î R | x2 - x + 2 = 0}
g) G = {x Î N | (2x - 1)(x2 - 5x + 6) = 0} h) H = {x | x = 2k với k Î Z và -3 < k < 13}
i) I = {x Î Z | x2 > 4 và |x| < 10} j) J = {x | x = 3k với k Î Z và -1 < k < 5}
k) K = {x Î R | x2 - 1 = 0 và x2 - 4x + 3 = 0} l) L = {x Î Q | 2x - 1 = 0 hay x2 - 4 = 0
a: \(A=\left\{0;1;2;3;4;5\right\}\)
b: \(B=\left\{2;3;4;5\right\}\)
c: \(C=\left\{0;1;-1;2;-2;3;-3\right\}\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in Z\) | \(2x^3-3x^2-5x=0\) }
b) B = { \(x\in Z\) | \(x< \left|3\right|\) }
c) C = { x = 3k; x, \(k\in Z\); -4<x<12 }
a) \(2x^3-3x^2-5x=0\)
\(x\left(x+1\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)
\(A=\left\{-1\right\}\)
b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)
\(B=\left\{-2;-1;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)
\(2x^3-3x^2-5x=0\)
\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow A=\left\{0;-1\right\}\)
b) \(B=\left\{-2;-1;0;1;2\right\}\)
c) \(C=\left\{-3;3;6;9\right\}\)
Liệt kê các phần tử của các tập hợp:
a/. Tập A các số tự nhiên chia hết cho 3 và nhỏ hơn 25
b/.B= {n ∈ N|(n-1)(n+2) ≤15}
c/ C= {x ∈ Z|(x+1)(3x2-10x+3)=0}
d/ D={2k+1|k∈ Z,|k| ≤2}
Viết tập hợp a bằng cách liệt kê các phần tử
A=(x thuộc z/-2 lớn hơn hoặc bằng x bé hơn 9 mũ 8 ÷9 mũ 7 -8×2014)
1)Viết các tập hợp sau dưới dạng liệt kê các phần tử:
a)A={x N/2 <10} d)D={x Z / 9 x<26}
b)B={x Z/|x|<5} e) E={x Q/x2-x+1=0}
c)C={x R/(x+2)(x-3)(x2-5x+6)=0} f) F={3+2k/k N,k<5}
1) Tìm x thuộc Z biết:
-3<|3+x|<3
2)
a/ Tính tổng các số nguyên x thỏa: -97<x bé hơn hoặc bằng 95
b/ Tính nhanh: A = (-2) + 4 + (-6) + 8 +...+ (-66) + 68
3) Cho A = {x thuộc Z | -1 bé hơn hoặc bằng |x+3| bé hơn hoặc bằng 1}. Viết tập hợp dưới dạng liệt kê các phần tử.
1) Ta có: x thuộc Z => 3+x thuộc Z => |3+x| thuộc N
Mà -3<|3+x|<3
Tức là : 0<|3+x|<3
|3+x|=1 => 3+x= \(\pm1\orbr{\begin{cases}\Rightarrow3+x=1\Rightarrow x=-2\\\Rightarrow3+x=-1\Rightarrow x=-4\end{cases}}\)|3+x|=2 => 3+x= \(\pm2\orbr{\begin{cases}\Rightarrow3+x=2\Rightarrow-1\\\Rightarrow3+x=-2\Rightarrow-5\end{cases}}\)Vậy x thuộc {-2;-4;-2;-5} thì -3<|3+x|<3
2b) Dãy số 2,4,6,...,66,68 gồm (68-2):2+1=34 (số)
Ta có: (-2)+4+(-6)+...+(-66)+68
=[(-2)+4]+[(-6)+8]+...+[(-66)+68]
=(-2)+(-2)+...+(-2)
Ta có 34:2=17 số (-2)
=>17.(-2)
=> -34
Bài 1. Viết lại các tập hợp sau dưới dạng liệt kê tất cả các phần tử của nó:
a)A={n\(\in\)N|n(n+1)\(\le\)15}
b)B={3k-1|k\(\in\)Z, -5\(\le\)k\(\le\)3}
c)C={x\(\in\)Z||x|<10}
d)D={x\(\in\)Q|x2-3x+1=0}
e)E={x\(\in\)Z|2x3-5x2+2x=0}
f)F={x\(\in\)N|x<20 và x chia hết cho 3}
Bài 2.Viết lại các tập hợp sau bằng cách chỉra tính chất đặc trưng của chúng:
a)A={1;3;5;7;...}
b)B={0;2;4;6;8}
c)C=\(\left\{\dfrac{1}{2};\dfrac{1}{4};\dfrac{1}{8};\dfrac{1}{16};...\right\}\)
d)D={2,6,12,20,30}
e)E={-1+\(\sqrt{3}\);-1-\(\sqrt{3}\)}
Bài 3.Hãy liệt kê các phần tử của tập hợp A gồm các số chính phương không vượt quá 100.
a: A={0;1;2;3}
b: B={-16;-13;-10;-7;-4;-1;2;5;8}
c: C={-9;-8;-7;...;7;8;9}
d: \(D=\varnothing\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử
a) A= {x ∈ R | (2x – x2)( 3x – 2) = 0}
b, B = { x∈ Z | 2x3-3x2-5x = 0 }
c , C= { x ∈ Z | 2x2 -75x -77 = 0 }
d , D = { x ∈ R | (x2 - x - 2 ) (x2 - 9 ) = 0 } .
`#3107.101107`
a,
\(\text{A = }\left\{x\in R\text{ | }\left(2x-x^2\right)\left(3x-2\right)=0\right\}\)
`<=> (2x - x^2)(3x - 2) = 0`
`<=>`\(\left[{}\begin{matrix}2x-x^2=0\\3x-2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(2-x\right)=0\\3x=2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2-x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy, `A = {0; 2; 2/3}`
b,
\(\text{B = }\left\{x\in R\text{ | }2x^3-3x^2-5x=0\right\}\)
`<=> 2x^3 - 3x^2 - 5x = 0`
`<=> x(2x^2 - 3x - 5) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-3x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-2x+5x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x^2-2x\right)+\left(5x-5\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x\left(x-1\right)+5\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x+5=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)
Vậy, `B = {-5/2; 0; 1}.`
c,
\(\text{C = }\left\{x\in Z\text{ | }2x^2-75x-77=0\right\}\)
`<=> 2x^2 - 75x - 77 = 0`
`<=> 2x^2 - 2x + 77x - 77 = 0`
`<=> (2x^2 - 2x) + (77x - 77) = 0`
`<=> 2x(x - 1) + 77(x - 1) = 0`
`<=> (2x + 77)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+77=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-77\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{77}{2}\\x=1\end{matrix}\right.\)
Vậy, `C = {-77/2; 1}`
d,
\(\text{D = }\left\{x\in R\text{ | }\left(x^2-x-2\right)\left(x^2-9\right)=0\right\}\)
`<=> (x^2 - x - 2)(x^2 - 9) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-x-2=0\\x^2-9=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2+x-2x-2=0\\x^2=9\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x^2+x\right)-\left(2x+2\right)=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(x+1\right)-2\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=-1\\x=\pm3\end{matrix}\right.\)
Vậy, `D = {-1; -3; 2; 3}.`