TÌM GTLN hoặc GTNN
\(C=x^2-2x+2018\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Tìm GTLN hoặc GTNN của biểu thức C = |x|+2017/2018
C = {x} _576+6967=986=79
Có:\(\left|x\right|\ge0\)
\(\Rightarrow\left|x\right|+2017\ge2017\)
\(\Leftrightarrow\frac{\left|x\right|+2017}{2018}\ge\frac{0+2017}{2018}=\frac{2017}{2018}\)
Vậy GTNN của C =2017/2018 khi và chỉ khi x=0
Tìm GTLN hoặc GTNN của biểu thức C=|x|+2017/2018
\(C=|x|+\frac{2017}{2018}\)
vì \(|x|\ge0\forall x\)
\(\Rightarrow|x|+\frac{2017}{2018}\ge\frac{2017}{2018}\forall x\)\(\Rightarrow C\ge\frac{2017}{2018}\)
Dấu "=" xảy ra khi x=0
vậy \(Cmin=\frac{2017}{2018}\Leftrightarrow x=0\)
Tìm GTLN hoặc GTNN của
a, A= -2018/x2-10x+2012
b, E= |x+11|+|x+17|+|2018+x|
\(A=\frac{-2018}{x^2-10x+2012}\)
ta có:\(x^2-10x+2012=x^2-2.x.5+5^2+1987=\left(x-5\right)^2+1987\ge1987\)vì (x-5)2\(\ge\)0)
dấu = xảy ra khi x-5=0
=> x=5
vì tử thức âm mà mẫu thức luôn lớn hơn 0
=> E đạt giá trị nhỏ nhất khi mẫu thức nhỏ nhất
khi đó Min A=\(-\frac{2018}{1987}\)đạt tại x=5
Tìm GTLN hoặc GTNN của
a, A= -2018/x2-10x+2012
b, E= |x+11|+|x+17|+|2018+x|
TÌM GTLN hoặc GTNN
A= |x-2018| - |x-2019|
\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)
Tìm GTLN hoặc GTNN của:
\(C=\sqrt{-x^2+6x}\)
\(D=\sqrt{6x-2x^2}\)
Ta có:
\(C=\sqrt{-x^2+6x}\)
Mà: \(\sqrt{-x^2+6x}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{-x^2+6x}=0\)
\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)
\(\Leftrightarrow-x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
\(D=\sqrt{6x-2x^2}\)
Mà: \(\sqrt{6x-2x^2}\ge0\)
Dấu "=" xảy ra khi:
\(\sqrt{6x-2x^2}=0\)
\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)
\(\Leftrightarrow2x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)
Dấu "=" xảy ra khi \(x=3\)
Vậy \(maxC=3\)
\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)
\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)
Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)
Tìm GTNN hoặc GTLN của C=(x+1) mũ 2 +|2x-3-y|+30
\(C\ge30\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-1
Tìm GTLN hoặc GTNN của
E= |x+11|+|x+17|+|2018+x|
\(E=\left|x+11\right|+\left|x+17\right|+\left|2018+x\right|\)
\(\left|x+11\right|+\left|2018+x\right|=\left|-x-11\right|+\left|2018+x\right|\ge\left|-x-11+2018+x\right|=2007\)
dấu = xảy ra khi \(\left(-x-11\right).\left(2018+x\right)\ge0\Rightarrow-2018\le x\le-11\)(1)
\(\left|x+17\right|\ge0\)
dấu = xảy ra khi \(x+17=0\Rightarrow x=-17\)(2)
\(\Rightarrow E\ge2007\)
dấu = xảy ra khi dấu = ở (1) và (2) đồng thời xảy ra
=> x=-17
Vậy Min E=2007 khi x=-17