Tính giá trị của biểu thức sau tại x = 1/2011+2012
( 2x+1)(2x-1)-(x+2)(x^2-2x+4)+x^2(x-4)
Tính giá trị của biểu thức sau :
A= 2x^2y+xy-3xy tại x=-2 và y=4
B= (2x^2+x-1)-(x^2+5x-1) tại x=-2
C= -x^4+3x^2-x^3+3-2x-x^2+x4+x^3-2x^2 tại x=3/2
A = 2\(x^2\)y + \(xy\) - 3\(xy\)
Thay \(x\) = -2; y = 4 vào biểu thức A ta có:
A = 2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4
A = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4
A = 8 \(\times\) 4 - 8 + 24
A = 32 - 8 + 24
A = 24 + 24
A = 48
B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )
Thay \(x\) = - 2 vào biểu thức B ta có:
B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}
B = { 2 \(\times\) 4 - 3} - { 4 - 10 - 1}
B = { 8 - 3} - { 4 - 11}
B = 5 - (-7)
B = 5 + 7
B = 12
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
tính giá trị của biểu thức sau: a=(2x-1)^2+(2x+1)^2+2(4x^2-1) tại x=1/4
Ta có: \(a=\left(2x-1\right)^2+\left(2x+1\right)^2+2\left(4x^2-1\right)\)
\(=\left(2x-1+2x+1\right)^2\)
\(=16x^2=16\cdot\dfrac{1}{16}=1\)
Rút gọn biểu thức sau rồi tính giá trị biểu thức
H = (x - 1)³ - (x + 2) (x² - 2x + 4) + 3(x + 4) (x - 4) tại x = 1/-2
Lời giải:
$H=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-16)$
$=x^3-3x^2+3x-1-x^3-8+3x^2-48$
$=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-48)$
$=3x-57=3.\frac{-1}{2}-57=\frac{-117}{2}$
BT8: Tính giá trị của các biểu thức sau:
\(1,\left(2x+3\right)^2-\left(2x-1\right)^2-6x\) tại \(x=201\)
\(2,B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)tại \(x=\dfrac{1}{20}\)
1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8
Khi x=201 thì A=10*201+8=2018
2: B=4x^2+20x+25-4x^2+12=20x+37
Khi x=1/20 thì B=1+37=38
1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)
\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)
\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)
\(A=4\left(4x+2\right)-6x\)
\(A=16x+8-6x\)
\(A=10x+8\)
Thay \(x=201\) vào A ta có:
\(A=10\cdot201+8=2010+8=2018\)
Vậy: ....
2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)
\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)
\(B=4x^2+20x+25-4x^2+36\)
\(B=20x+61\)
Thay \(x=\dfrac{1}{20}\) vào B ta có:
\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)
Vậy: ...
Cho biểu thức B=(2x+1/2x-1 + 4/1-4x^2 - 2x-1/2x+1)2x+1/x+2
a)Tìm điều kiện của x để biểu thức B được xác định
b)Rút gọn B
c)Tính giá trị của biểu thức B tại x thỏa mãn lx-1l=3
d)Tìm giá trị nguyên của x để B nhận giá trị nguyên
a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)
Bài 1 : Tính nhanh giá trị biểu thức A) x^2+4y^2-4xy tại x = 18 ,y=4 B)(2x+1)^2+(2x-1)^2-2(1+2x)(1-2x) tại x= 100
a: \(=\left(x-2y\right)^2=\left(18-2\cdot4\right)^2=100\)
câu 5
1, tính giá trị của biểu thức sau:
a, \(x^2+2x+1
tại
x=99\)
b, \(x^3-3x^2+3x-1
tại
x=101\)
2, tìm giá trị lớn nhất của biểu thức
\(A=
-x^2+2xy-4y^2+2x+10y-3\)
1, a)
Ta có:
\(x^2+2x+1=\left(x+1\right)^2\)
Thay x=99 vào ta có:
\(\left(99+1\right)^2=100^2=10000\)
b) Ta có:
\(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Thay x=101 vào ta có:
\(\left(101-1\right)^3=100^3=1000000\)
Câu 1: Tìm giá trị nhỏ nhất của biểu thức \(P=x^4+2x^3+3x^2+2x+1\)
Câu 2: giải phương trình sau: \(|x-2|(x-1)(x+1)(x+2)=4\)
Câu 3: Cho \(x^2+x=1\) .Tính giá trị biểu thức \(Q=x^6+2x^5+2x^4+2x^3+2x^2+2x+1\)