Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bình Trần Thị
Xem chi tiết

Vì O là tâm của hình bình hành ABCD

nên O là trung điểm chung của AC và BD

=>\(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0};\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\)

\(\dfrac{1}{4}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\right)\)

\(=\dfrac{1}{4}\left(\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{4}\left(4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OC}+\overrightarrow{OB}+\overrightarrow{OD}\right)\)

\(=\dfrac{1}{4}\cdot4\overrightarrow{MO}=\overrightarrow{MO}\)

Exo Chanyeol
Xem chi tiết
Tô Mì
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2023 lúc 9:43

Xét ΔAHD vuông tại H và ΔCFB vuông tại F có

AD=CB

góc ADH=góc CBF

Do đó; ΔAHD=ΔCFB

=>DH=FB

=>\(\overrightarrow{DH}=\overrightarrow{FB}\)

\(\overrightarrow{DH}+\overrightarrow{DF}=\overrightarrow{DF}+\overrightarrow{FB}=\overrightarrow{DB}\)

Nguyễn Đăng Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2021 lúc 21:50

a: \(\overrightarrow{AD}+\overrightarrow{DC}=\overrightarrow{AC}\)

b: \(\overrightarrow{NA}+\overrightarrow{ND}=\overrightarrow{0}\)

Bình Trần Thị
Xem chi tiết
thùy linh
Xem chi tiết
2611
10 tháng 1 2023 lúc 12:45

`a)` Xét hbh `ABCD` có: `E,F` là tđ của `BC;AD`

   `=>EF` là đường trung bình của hbh `ABCD`

  `=>EF=AB=DC`  `(1)`

`@E;F` là trung điểm của `BC;AD=>{(BE=1/2BC=>BC=2BE),(AF=1/AD=>AD=2AF):}`

                     Mà `AD=2AB=BC`

  `=>AF=AB=BE`  `(2)`

Từ `(1);(2)=>AF=BE=AB=EF=>` T/g `ABEF` là hình thoi

`b)` C/m: `BEDF` là hbh chứ nhỉ?

Có: `AF=DF`

  Mà `AF=BE`

  `=>DF=BE` mà `DF //// BE`

 `=>` T/g `BEDF` là hbh

`c)` Xét `\triangle AFB` có: `AF=AB` và `\hat{A}=60^o`

 `=>\triangle AFB` đều `=>{(AF=BF),(\hat{AFB}=60^o ):}`

       Mà `AF=DF`

 `=>DF=BF`

 `=>\triangle DFB` cân

`=>\hat{BFD}+2\hat{FDB}=180^o`

`=>180^o -\hat{AFB}+2\hat{ADB}=180^o`

`=>180^o -60^o +2\hat{ADB}=180^o =>\hat{ADB}=30^o`

Nguyễn Vy
Xem chi tiết
Phạm Kim Tuyến
Xem chi tiết
Phạm Kim Tuyến
1 tháng 11 2021 lúc 19:31

Help me please 😭

Minh Anh
1 tháng 11 2021 lúc 19:34

tham khảo

a) Ta có: (F là trung điểm của AD)

(E là trung điểm của BC)

mà AD=BC(Hai cạnh đối trong hình bình hành ABCD)

nên AF=BE

Xét tứ giác AFEB có 

AF//BE(AD//BC, F∈AD, E∈BC)

AF=BE(cmt)

Do đó: AFEB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: (gt)

mà (F là trung điểm của AD)

nên AB=AF

Hình bình hành AFEB có AB=AF(cmt)

nên AFEB là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AE và BF vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AE⊥BF(đpcm)

b) Ta có: AFEB là hình thoi(cmt)

nên AF=FE=EB=AB và (Số đo của các cạnh và các góc trong hình thoi AFEB)

hay 

Xét ΔFEB có FE=EB(cmt)

nen ΔFEB cân tại E(Định nghĩa tam giác cân)

Xét ΔFEB cân tại E có (cmt)

nên ΔFEB đều(Dấu hiệu nhận biết tam giác cân)

⇒(Số đo của một góc trong ΔFEB đều)

Ta có: AB//FE(hai cạnh đối trong hình thoi ABEF)

nên (hai góc đồng vị)

hay 

Ta có: tia FE nằm giữa hai tia FB,FD

nên 

(1)

Ta có: AD//BC(hai cạnh đối trong hình bình hành ABCD)

nên (hai góc trong cùng phía bù nhau)

hay (2)

Từ (1) và (2) suy ra 

Xét tứ giác BFDC có 

FD//BC(AD//BC, F∈AD)

nên BFDC là hình thang có hai đáy là FD và BC(Định nghĩa hình thang)

Hình thang BFDC có (cmt)

nên BFDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

VŨ ĐỖ THU TRANG
Xem chi tiết