Cho hình bình hành ABCD , M là trung điểm BC , N thỏa mãn vecto NC = 2 ND .
a Biểu thị vecto DM ,MN theo 2 vecto AB , AD
b Biểu thị vecto MN theo vecto AC và BD
cho I là trung điểm của đoạn AB,M là điểm bất kì. Chứng minh vector MA +vector MB=2vector MI
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của AB, AC và BC. Gọi I là trung điểm của MN. Đặt vecto u = vecto AB , vecto v = vecto AC
a) Hãy phân tích vecto AI theo hai vecto u và v
b) Hãy phân tích vecto EI theo hai vecto u và v.
Cho tứ giác ABCD. Các điểm M, N, P và Q lần lượt là trung điểm của AB, BC, CD và DA. Chứng minh rằng hai tam giác ANP và CMQ có cùng trọng tâm ?
Cho hình bình hành ABCD , gọi M là trung điểm BC, điểm I thỏa \(\overrightarrow{AI}=\dfrac{2}{3}\overrightarrow{AM}\).Chứng minh rằng \(\overrightarrow{BI}=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)
Cho hình bình hành ABCD, I là trung điểm của cạnh DC . Các số m n , thích hợp để
AI=mAD+nAB là
Cho hình bình hành ABCD, I là trung điểm của cạnh DC . Các số m n , thích hợp để
AI=mAD+nAB là
Giúp tui :v
Bài 1 : Cho hình chữ nhật ABCD có AB = 2a,AD = a.Tính độ dài vecto AB + vecto DB
Bài 2 : Cho tam giác ABC gọi I là trung điểm trên cạnh BC sao cho 2CI=3BJ,J trên cạnh BC sao cho 5BJ=2CI.Phân tích vecto AI và AJ theo hai vecto AB,AC
Cho hình vuông ABCD tâm Ở. Gọi E, F lần lượt là trung điểm của OB, CD G là trọng tâm của∆OBC Cm.GA +2GB+3GC=0 Biểu thị FG theo CB và CD