Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
linh
Xem chi tiết
Thu Thao
30 tháng 9 2020 lúc 16:39

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

Khách vãng lai đã xóa
Nguyễn Đức Anh
Xem chi tiết
Đinh Đức Hùng
13 tháng 7 2017 lúc 17:55

a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)

b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)

»βέ•Ҫɦαηɦ«
13 tháng 7 2017 lúc 18:53

Ta có : 4x2 + 2x + 1

= (2x)2 + 2.2x.\(\frac{1}{2}\)\(\frac{1}{2}+\frac{3}{4}\)

= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)

Mà : (2x + \(\frac{1}{2}\))\(\ge0\forall x\)

=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)  \(>0\forall x\)

Vậy 4x2 + 2x + 1 \(>0\forall x\)

Nguyễn Thị Kim Anh
Xem chi tiết
kaitovskudo
24 tháng 7 2017 lúc 14:06

a)Ta có: x2+x+1

=x2+2.x.1/2+1/4+3/4

=(x+1/2)2+3/4

Vì (x+1/2)2>=0 với mọi x

=>(x+1/2)2+3/4>0 với mọi x

Vậy x2+x+1>0 với mọi x.

b)Ta có: -5-x2+2x

=-(x2-2x+5)

=-(x2-2x+1+4)

=-(x-1)2-4

Ta có:(x-1)2>=0 với mọi x

=>-(x-1)2<=0 với mọi x

=>-(x-1)2-4<0 với mọi x

Vậy -5-x2+2x<0 với mọi x

                    

uzumaki naruto
24 tháng 7 2017 lúc 14:12

a) x2+x+1 =  \(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

= \(x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\) 

=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Do \(\left(x+\frac{1}{2}\right)^2\le0\)vs mọi x => \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)vs mọi x

=> x^2 + x + 1 > 0 vs mọi x

b) -5-x^2 + 2x = -(x^2 - 2x + 5) = \(-\left(x^2-2x+1+4\right)=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\)

Do \(-\left(x-1\right)^2\le0\)vs mọi x=> \(-\left(x-1\right)^2-4< 0\)vs mọi x 

=> -5-x^2+2x<0 vs mọi x

Nguyễn Thị Kim Anh
Xem chi tiết
Demngayxaem
Xem chi tiết
Tiểu Ma Bạc Hà
10 tháng 6 2017 lúc 19:47

a , Ta có \(x^2+x+1=x^2+2x\frac{1}{2}+\left(\frac{1}{2}\right)^2+\)\(\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}>0\left(đpcm\right)\)

b , Ta có : \(4x^2-2x+3\)\(\left(2x\right)^2-2.2x.1+1^2+2\) = \(\left(2x-1\right)^2+2\ge2>0\left(đpcm\right)\)

c , Ta có \(3x^2+2x+1=x^2-\frac{2x}{3}+\frac{1}{9}+2x^2+\frac{8x}{3}+\frac{8}{9}\)

\(\left(x-\frac{1}{3}\right)^2+2\left(x^2+\frac{4x}{3}+\frac{4}{9}\right)=\left(x-\frac{1}{3}\right)^2+2\left(x+\frac{2}{3}\right)^2\ge0\)

Vì Dấu "=" không thể xảy ra , do đó \(3x^2+2x+1>0\left(đpcm\right)\)

Demngayxaem
10 tháng 6 2017 lúc 19:42

a,-x2+x+1>0 với mọi x mới đúng

nguyễn thị minh châu
10 tháng 6 2017 lúc 19:46

anh gioi qua

nguyên công quyên
Xem chi tiết
Hoàng Nguyễn Văn
26 tháng 3 2019 lúc 22:36

Bài 1:

a) Xét 4(x^2-5x+12)=4x^2-20x+48=[(2x)^2-2.2x.5+5^2] +23=(2x-5)^2+23 >= 0+23 > 0 với mọi x

=>x^2-5x+12>0 Với mọi x

b) ta có (x-3)(x-5) +20= x^2-8x+15 +20=x^2-8x+35=[x^2-2.4.2x+4^2]+19=(x-4)^2 +19 >= 0+19 >0

Bài 2:

Ta có : 3x+5 >= 2+2x

=>3x-2x>=2-5 

=>x >= -3

Vậy x >= -3

Azura Sky
Xem chi tiết
kuroba kaito
7 tháng 3 2018 lúc 16:49

a) xét hiệu

\(\dfrac{x}{y}+\dfrac{y}{x}-2>0\)

\(\Leftrightarrow\dfrac{x^2}{xy}+\dfrac{y^2}{xy}-\dfrac{2xy}{xy}>0\)

\(\Leftrightarrow\dfrac{x^2-2xy+y^2}{xy}>0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{xy}>0\) (luôn đúng )

=> đpcm

kuroba kaito
7 tháng 3 2018 lúc 16:49

đề thiếu x,y>0

Đỗ Linh Chi
Xem chi tiết
Mỹ Duyên
26 tháng 5 2017 lúc 17:36

Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?

3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1

Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)

Nguyễn Tấn Dũng
26 tháng 5 2017 lúc 22:49

Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.

4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x

5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x

Nguyễn Xuân Tiến 24
27 tháng 5 2017 lúc 9:31

Bài 3,4,5 các bn kia đã làm rồi nên mk ko cần làm lại nhé:

1,a2(a+1)+2a(a+1)=(a+1)(a2+2a)

=(a+1)\(\left[a\left(a+2\right)\right]\)=a(a+1)(a+2)

Do a;a+1;a+2 là 3 số nguyên liên tiếp nên có một số chia hết cho 3; chia hết cho 2.

\(\Rightarrow\)a(a+1)(a+2)\(⋮\)6 hay a2(a+1)+2a(a+1)\(⋮\)6 (a nguyên)

2, a(2a-3)-2a(a+1)=2a2-3a-2a2-2a=-5a

Do -5a\(⋮\)5 (\(\forall\)a), suy ra a(2a-3)-2a(a+1)\(⋮\)5

phan thị phương
Xem chi tiết