Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lai Duy Dat
Xem chi tiết
Đông Pham
Xem chi tiết
Đinh Trí Gia BInhf
18 tháng 4 2023 lúc 21:56

loading...

Học tốt nha bn ! ( dòng * ko cần ghi vào đâu bn đây là nháp giở của mik )

Đoàn Thành Trung
Xem chi tiết
Nguyễn Khang
18 tháng 8 2019 lúc 9:05

Anh/ chị viết rõ đề bằng công thức toán được không ạ?

Vd : 1/2(2x+2y+z)^2 là \(\frac{1}{2\left(2x+2y+z\right)^2}\) hay sao?

\(P=8x^3+8y^3+\frac{z^3}{\left(2x+2y+2z\right)\left(4xy+2yz+2zx\right)}\) đúng ko ạ?

Hữu Sang Lê
Xem chi tiết
Hữu Sang Lê
23 tháng 1 2018 lúc 17:56

ai giúp vs

Phạm Xuân Tiến
28 tháng 12 2019 lúc 1:03

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

Khách vãng lai đã xóa
Thanh Ngọc
Xem chi tiết
Akai Haruma
11 tháng 11 2023 lúc 16:57

Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$

$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$

$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$

Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$

$\Rightarrow 2x-y-z=y-3=z-5=0$

$\Rightarrow y=3; z=5; x=4$

Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$

Khiêm Nguyễn Gia
Xem chi tiết
Xyz OLM
29 tháng 8 2023 lúc 20:22

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

Big City Boy
Xem chi tiết
Thu Thao
10 tháng 1 2021 lúc 15:03

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

Nguyễn Thế Anh
Xem chi tiết
Dương Tuyết
Xem chi tiết