Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đỗ Quỳnh Phương
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 7:22

BH là đường cao nên cũng là đường trung trực của tam giác ABC đều

\(\Rightarrow BH\perp AC\) tại H cũng là trung điểm của BC

\(\Rightarrow AH=HC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)

Vì \(\Delta AHB\) vuông tại H nên \(BH=\sqrt{AB^2-AH^2}=\sqrt{9a^2-\dfrac{9}{4}a^2}=\dfrac{3a\sqrt{3}}{2}\)

\(S_{ABC}=\dfrac{1}{2}BH\cdot AC=\dfrac{1}{2}\cdot\dfrac{3a\sqrt{3}}{2}\cdot3a=\dfrac{9a^2\sqrt{3}}{4}\left(đvdt\right)\)

 

 

Nguyễn Đỗ Quỳnh Phương
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 21:10

\(AB=AC=\dfrac{BC}{\sqrt{2}}=\dfrac{3a}{\sqrt{2}}\)

\(\Rightarrow V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.2a.\dfrac{1}{2}.\left(\dfrac{3a}{\sqrt{2}}\right)^2=\dfrac{3a^3}{2}\)

Diễm Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 12:38

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

Võ Phương Oanh
Xem chi tiết
Đặng Quốc Đạt
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 15:49

bạn đăng từng bài nhé

Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 19:43

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

Ly Ly
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 10 2021 lúc 21:05

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

nguyen hai
2 tháng 10 2021 lúc 21:08

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:09

Bài 2:

a: Xét ΔABC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:01

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

Hùng Chu
Xem chi tiết
D-low_Beatbox
8 tháng 6 2021 lúc 14:14

a, Xét ΔABC và ΔHBA có:

∠BAC chung, ∠BHA=∠BAC (=90o)

=> ΔABC ∼ ΔHBA (g.g)

b, Áp dụng đ/l Pitago vào △ABC ta có:

BC2=AB2+AC2 => BC=√(62+82)=10 (cm)

Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC

=> 6.8=AH.10 => AH=4,8 (cm)

c, Xét △HAB và △HCA có:

∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)

=> △HAB ∼ △HCA (g.g)

=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)

d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)

=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)

=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)

 

Hằng Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 15:25

loading...