Cho ΔABC vuông cân tại A , có cạnh BC =3a . Hảy tính diện tích ΔABC.
Cho ΔABC đều cạnh 3a. Hảy tính độ dài đường cao BH và diện tích ΔABC.
BH là đường cao nên cũng là đường trung trực của tam giác ABC đều
\(\Rightarrow BH\perp AC\) tại H cũng là trung điểm của BC
\(\Rightarrow AH=HC=\dfrac{1}{2}AC=\dfrac{3}{2}a\)
Vì \(\Delta AHB\) vuông tại H nên \(BH=\sqrt{AB^2-AH^2}=\sqrt{9a^2-\dfrac{9}{4}a^2}=\dfrac{3a\sqrt{3}}{2}\)
\(S_{ABC}=\dfrac{1}{2}BH\cdot AC=\dfrac{1}{2}\cdot\dfrac{3a\sqrt{3}}{2}\cdot3a=\dfrac{9a^2\sqrt{3}}{4}\left(đvdt\right)\)
Cho khối chóp S. ABC , có SA vuông góc với mặt đáy ABC , SA = 2a. Mặt đáy là ΔABC vuông cân tại A, có cạnh BC = 3a. Tính khối chóp S. ABC.
\(AB=AC=\dfrac{BC}{\sqrt{2}}=\dfrac{3a}{\sqrt{2}}\)
\(\Rightarrow V_{SABC}=\dfrac{1}{3}SA.\dfrac{1}{2}AB.AC=\dfrac{1}{3}.2a.\dfrac{1}{2}.\left(\dfrac{3a}{\sqrt{2}}\right)^2=\dfrac{3a^3}{2}\)
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
a: ΔBAC vuông tại B có góc A=45 độ
nên ΔBAC vuông cân tại B
=>BA=BC=2a
AC=căn AB^2+BC^2=2a*căn 2
b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2
c: S ABC=1/2*2a*2a=2a^2
d: C=2a+2a+2a*căn 2=4a+2a*căn 2
Câu 7: Một hình chữ nhật có 2 kích thước là (3x - y) và (3x + y). Biểu thức tính diện tích hình chữ nhật theo x và y là?
A. 3x² - y² B. 9x² - y²
Câu 8: Cho ΔABC. Các điểm D và E lần lượt trên các cạnh AB và AC sao cho DE / / BC. Tứ giác BDEC là hình thang cân nếu ΔABC?
A. ΔABC vuông tại A B. ΔABC cân tại A
C. ΔABC cân tại B D. ΔABC vuông tại C
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
1.
\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)
Tim Gia Tri Nho Nhat Cua
a) A = x - 4 can x + 9
b) B = x - 3 can x - 10
c ) C = x - can x + 1
d ) D = x + can x + 2
Bài 2:
a: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=6:\sin60^0=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho TAm Giác ABC vuông tại A , AB =6cm , AC = 8cm .Đường cao AH
a) Chứng minh ΔABC∞ΔHBA
b) Tính cạnh BC và AH
c) Tính tỉ số diện tích của ΔHAB và ΔHAC
d) Đường phân giác AD .TÍnh BD,CD và tỉ số diện tích của ΔABC và ΔACD
a, Xét ΔABC và ΔHBA có:
∠BAC chung, ∠BHA=∠BAC (=90o)
=> ΔABC ∼ ΔHBA (g.g)
b, Áp dụng đ/l Pitago vào △ABC ta có:
BC2=AB2+AC2 => BC=√(62+82)=10 (cm)
Ta có: SABC=\(\dfrac{1}{2}\)AB.AC=\(\dfrac{1}{2}\)AH.BC
=> 6.8=AH.10 => AH=4,8 (cm)
c, Xét △HAB và △HCA có:
∠BHA=∠CHA (=90o), ∠ABC=∠HAC (cùng phụ ∠BCA)
=> △HAB ∼ △HCA (g.g)
=> \(\dfrac{AB}{AC}=\dfrac{\text{△HAB}}{\text{△HCA}}\)=\(\dfrac{6}{8}\)=\(\dfrac{3}{4}\)
d, AD là đường p/g của △ABC => \(\dfrac{AB}{BD}=\dfrac{AC}{DC}\)=\(\dfrac{AB+AC}{BD+DC}=\dfrac{14}{10}=\dfrac{7}{5}\)
=> \(\dfrac{AB}{BD}=\dfrac{7}{5}\) => \(\dfrac{6}{BD}=\dfrac{7}{5}\) => BD=\(\dfrac{30}{7}\) (cm)
=> \(\dfrac{AC}{DC}\)\(=\dfrac{7}{5}\) => \(\dfrac{8}{DC}=\dfrac{7}{5}\) => DC=\(\dfrac{40}{7}\) (cm)
Cho TAm Giác ABC vuông tại A , AB =6cm , AC = 8cm .Đường cao AH
a) Chứng minh ΔABC∞ΔHBA
b) Tính cạnh BC và AH
c) Tính tỉ số diện tích của ΔHAB và ΔHAC
d) Đường phân giác AD .TÍnh BD,CD và tỉ số diện tích của ΔABC và ΔACD