Tính nhanh:
a,\(\frac{14+27.13}{14.27+13}\) d,\(\frac{2006.2006-1}{2005.2007}\)
b,\(\frac{1995.1996-1997}{1995.1994+1993}\)
c,\(\frac{2004.2004}{2003.2005+1}\)
Tính nhanh
\(A=\frac{1995.1996-1997}{1995.1994+1993}\)
\(B=\frac{12345.67890-54321}{12344.67890+13569}\)
A = \(\frac{1995.1996-1997}{1995.1994+1993}\)
= \(\frac{1995.\left(1994+2\right)-1997}{1995.1994+1993}\)
= \(\frac{1995.1994+1995.2-1997}{1995.1994+1993}\)
= \(\frac{1995.1994+3990-1997}{1995.1994+1993}\)
= \(\frac{1995.1994+1993}{1995.1994+1993}\)
= \(1\)
b) B = \(\frac{12345.67890-54321}{12344.67890+13569}\)
= \(\frac{\left(12344+1\right).67890-54321}{12344.67890+13569}\)
= \(\frac{12344.67890+67890-54321}{12344.67890+13569}\)
= \(\frac{12344.67890+13569}{12344.67890+13569}\)
= \(1\)
A= \(\frac{1995.1996-1997}{1995.1994+1993}\)
các bạn giúp mình nha
\(A=\frac{1995\cdot1996-1997}{1995\cdot1994+1993}\)
\(A=\frac{1995\cdot\left(1994+2\right)-1997}{1995\cdot1994+1993}\)
\(A=\frac{1995\cdot1994+1995\cdot2-1997}{1995\cdot1994+1993}\)
\(A=\frac{1995\cdot1994+3990-1997}{1995\cdot1994+1993}\)
\(A=\frac{1995\cdot1994+1993}{1995\cdot1994+1993}\)
\(A=1\)
cho: \(\frac{2006.2006-2005.2007}{2006.2007-2006.2005}\)
bài làm nào đúng:
a, \(\frac{2006.2006-2005.2007}{2006.2007-2006.2005}\)
= \(\frac{2006^2-\left(2006-1\right).\left(2006+1\right)}{2006.\left(2007-2005\right)}\)
=\(\frac{2006^2-\left(2006^2-1\right)}{2006.2}\)
=\(\frac{1}{4012}\)
b,
=\(\frac{2006.2006-2005.2006+2005}{2006.\left(2007-2005\right)}\)
=\(\frac{2006.\left(2006-2005\right)+2005}{2006.2}\)
=\(\frac{4011}{4012}\)
câu nào đúng, câu nào sai?
theo mình là câu a nhưng thằng em mình cứ cãi là câu b đúng, tại cô giáo nó làm như vậy( có phải câu b là do bị nhầm dấu từ dòng đầu tiên đúng ko?
Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)
Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.
P/s: Thử lại bằng casio là thấy rõ bạn đúng.
tính nhanh:
B=\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
B=\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
B= \(\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
B=\(\frac{3}{4}\)
Sau mình làm tiếp vội quá! k mình nha
Chứng minh rằng:a,0,3 . (2003^2003-1997^1997) là một số tụ nhiên
b,\(\frac{1}{10}\)(1997^2004^2006-1993^1994^1998)
Tính nhanh:
a)\(\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}};\)
b) \(\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\)
c)\(\left[ {\left( { - \frac{4}{9}} \right) + \frac{3}{5}} \right]:\frac{{13}}{{17}} + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}};\)
d) \(\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\)
a)
\(\begin{array}{l}\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}}\\ = \frac{7}{{11}}.\left( {\frac{{13}}{{23}} + \frac{{10}}{{23}}} \right)\\ = \frac{7}{{11}}.\frac{23}{23}\\ = \frac{7}{{11}}.1\\ = \frac{7}{{11}}\end{array}\)
b)
\(\begin{array}{l}\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\\ = \frac{5}{9}.\left( {\frac{{23}}{{11}} - \frac{1}{{11}} + 1} \right)\\ = \frac{5}{9}.\left( {2 + 1} \right)\\ = \frac{5}{9}.3 = \frac{5}{3}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( { - \frac{4}{9} + \frac{3}{5}} \right):\frac{{13}}{{17}}} \right] + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}}\\ = \left( { - \frac{4}{9} + \frac{3}{5}} \right).\frac{{17}}{{13}} + \left( {\frac{2}{5} - \frac{5}{9}} \right).\frac{{17}}{{13}}\\ = \frac{{17}}{{13}}.\left( { - \frac{4}{9} + \frac{3}{5} + \frac{2}{5} - \frac{5}{9}} \right)\\ = \frac{{17}}{{13}}.\left[ {\left( { - \frac{4}{9} - \frac{5}{9}} \right) + \left( {\frac{3}{5} + \frac{2}{5}} \right)} \right]\\ =\frac{{17}}{{13}}. (\frac{-9}{9}+\frac{5}{5})\\= \frac{{17}}{{13}}.\left( { - 1 + 1} \right)\\ = \frac{{17}}{{13}}.0 = 0\end{array}\)
d)
\(\begin{array}{l}\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\\ = \frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{6}{{22}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{4}{{10}}} \right)\\ = \frac{3}{{16}}:\frac{{ - 3}}{{22}} + \frac{3}{{16}}:\frac{{ - 3}}{{10}}\\ = \frac{3}{{16}}.\frac{{ - 22}}{3} + \frac{3}{{16}}.\frac{{ - 10}}{3}\\ = \frac{3}{{16}}.\left( {\frac{{ - 22}}{3} + \frac{{ - 10}}{3}} \right)\\ = \frac{3}{{16}}.\frac{{ - 32}}{3}\\ = - 2\end{array}\)
\(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
Ta có : \(\frac{x-1991}{9}+\frac{x-1993}{7}+\frac{x-1995}{5}+\frac{x-1997}{3}+\frac{x-1999}{1}\)\(=\frac{x-9}{1991}+\frac{x-7}{1993}+\frac{x-5}{1995}+\frac{x-3}{1997}+\frac{x-1}{1999}\)
\(\Rightarrow\left(\frac{x-1991}{9}-1\right)+\left(\frac{x-1993}{7}-1\right)+\left(\frac{x-1995}{5}-1\right)+\left(\frac{x-1997}{3}-1\right)+\left(\frac{x-1999}{1}-1\right)\)
\(=\left(\frac{x-9}{1991}-1\right)+\left(\frac{x-7}{1993}-1\right)+\left(\frac{x-5}{1995}-1\right)+\left(\frac{x-3}{1997}-1\right)+\left(\frac{x-1}{1999}\right)\)
\(\Rightarrow\frac{x-2000}{9}+\frac{x-2000}{7}+\frac{x-2000}{5}+\frac{x-2000}{3}\)
\(=\frac{x-2000}{1991}+\frac{x-2000}{1993}+\frac{x-2000}{1995}+\frac{x-2000}{1997}+\frac{x-2000}{1999}\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)=\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\)
\(\Rightarrow\left(x-2000\right)\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(x-2000\right)\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)=0\)
\(\Rightarrow\left(x-2000\right)\left[\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\right]=0\)
Vì \(\left(\frac{1}{9}+\frac{1}{7}+\frac{1}{5}+\frac{1}{3}\right)-\left(\frac{1}{1991}+\frac{1}{1993}+\frac{1}{1995}+\frac{1}{1997}+\frac{1}{1999}\right)\ne0\)
=> x - 2000 = 0
=> x = 2000
a ) 6:3/5 -7/6 .6/7
__________________
21/5 .10/11 + 57/11
b) 2006.2005 -1
_____________
2004.2006+2005
c)1995.1996 -1997
_______________
1995.1994+1993
help me
Tính nhanh
A=\(\frac{7.9+14.27+21.36}{21.27+42.81+63.108}\)
B=\(\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}+\frac{5+\frac{5}{13}-\frac{5}{169}+\frac{5}{91}}{7+\frac{8}{13}-\frac{7}{169}}\)
\(A=\frac{7\times9+14\times27+21\times36}{21\times27+42\times81+63\times108}=\frac{7\times9+7\times2\times9\times3+7\times3\times9\times4}{21\times27+21\times2\times27\times3+21\times3\times27\times4}=\frac{7\times9\times\left(1+2\times3+3\times4\right)}{21\times27\times\left(1+2\times3\times3\times4\right)}=\frac{7\times3\times3}{7\times3\times3\times9}=\frac{1}{9}\)