Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tiến Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 10 2018 lúc 4:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2018 lúc 13:32

ĐK: x ≥ −3; y ≥ −1

Ta có:

x + 3 − 2 y + 1 = 2 2 x + 3 + y + 1 = 4 ⇔ 2 x + 3 − 4 y + 1 = 4 2 x + 3 + y + 1 = 4 ⇔ x + 3 − 2 y + 1 = 2 − 5 y + 1 = 0 ⇔ y = − 1 x + 3 − 2. − 1 + 1 = 2 ⇔ y = − 1 x + 3 = 2 ⇔ y = − 1 x + 3 = 4 ⇔ y = − 1 x = 1 t m

Vậy hệ phương trình có nghiệm duy nhất (x; y) = (1; −1)

Nên x + y = 1 + (−1) = 0

Đáp án: B

Lê Kiều Trinh
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 10 2021 lúc 8:39

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)

\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)

c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Kết hợp đk:

\(\Leftrightarrow x\in\left\{0\right\}\)

d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)

e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)

\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)

\(minP=-1\Leftrightarrow x=0\)

Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 8:46

\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)

\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)

Dấu \("="\Leftrightarrow x=0\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2019 lúc 16:19

Lê Thu
Xem chi tiết
Yeutoanhoc
24 tháng 6 2021 lúc 14:36

`a)C=((2x^2+1)/(x^3-1)-1/(x-1)):(1-(x^2-2)/(x^2+x+1))`

`ĐK:x ne 1`

`C=((2x^2+1-x^2-x-1)/(x^3-1)):((x^2+x+1-x^2+2)/(x^2+x+1))`

`C=((x^2-x)/(x^3-1)):((x+3)/(x^2+x+1))`

`C=x/(x^2+x+1)*(x^2+x+1)/(x+3)`

`C=x/(x+3)`

`b)|1-x|+2=3(x+1)`

`<=>|1-x|+2=3x+3`

`<=>|1-x|=3x+1(x>=-1/3)`

`**1-x=3x+1`

`<=>4x=0<=>x=0(tmđk)`

`**x-1=3x+1`

`<=>2x=-2`

`<=>x=-1(l)`

Thay `x=0` vào C

`=>C=0`

`c)C in ZZ`

`=>x vdots x+3`

`=>x+3-3 vdots x+3`

`=>3 vdots x+3`

`=>x+3 in Ư(3)={+-1,+-3}`

`=>x in {-2,-4,0,-6}`

`d)|C|>C`

Mà `|C|>=0`

`=>C<0`

`<=>x/(x+3)<0`

Để 1 p/s `<=0` thì tử và mẫu trái dấu mà `x<x+3`

`=>` \(\begin{cases}x<0\\x+3>0\\\end{cases}\)

`<=>` \(\begin{cases}x>-3\\x<0\\\end{cases}\)

`<=>-3<x<0`

Jina Ryeo
Xem chi tiết
Nguyễn Van Anh
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 22:29

1: \(y=x+\dfrac{4}{\left(x-2\right)^2}\)

\(\Leftrightarrow y'=1+\left(\dfrac{4}{\left(x-2\right)^2}\right)'\)

=>\(y'=1+\dfrac{4'\left(x-2\right)^2-4\left[\left(x-2\right)^2\right]'}{\left(x-2\right)^4}\)

=>\(y'=1+\dfrac{-4\cdot2\cdot\left(x-2\right)'\left(x-2\right)}{\left(x-2\right)^4}\)

=>\(y'=1-\dfrac{8}{\left(x-2\right)^3}\)

Đặt y'=0

=>\(\dfrac{8}{\left(x-2\right)^3}=1\)

=>\(\left(x-2\right)^3=8\)

=>x-2=2

=>x=4

Đặt \(f\left(x\right)=x+\dfrac{4}{\left(x-2\right)^2}\)

\(f\left(4\right)=4+\dfrac{4}{\left(4-2\right)^2}=4+1=5\)

\(f\left(0\right)=0+\dfrac{4}{\left(0-2\right)^2}=0+\dfrac{4}{4}=1\)

\(f\left(5\right)=5+\dfrac{4}{\left(5-2\right)^2}=5+\dfrac{4}{9}=\dfrac{49}{9}\)

Vì f(0)<f(4)<f(5)

nên \(f\left(x\right)_{max\left[0;5\right]\backslash\left\{2\right\}}=f\left(5\right)=\dfrac{49}{9}\) và \(f\left(x\right)_{min\left[0;5\right]\backslash\left\{2\right\}}=1\)

2: \(y=cos^22x-sinx\cdot cosx+4\)

\(=1-sin^22x-\dfrac{1}{2}\cdot sin2x+4\)

\(=-sin^22x-\dfrac{1}{2}\cdot sin2x+5\)

\(=-\left(sin^22x+\dfrac{1}{2}\cdot sin2x-5\right)\)

\(=-\left(sin^22x+2\cdot sin2x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{81}{16}\right)\)

\(=-\left(sin2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}\)

\(-1< =sin2x< =1\)

=>\(-\dfrac{3}{4}< =sin2x+\dfrac{1}{4}< =\dfrac{5}{4}\)

=>\(0< =\left(sin2x+\dfrac{1}{4}\right)^2< =\dfrac{25}{16}\)

=>\(0>=-\left(sin2x+\dfrac{1}{4}\right)^2>=-\dfrac{25}{16}\)

=>\(\dfrac{81}{16}>=-sin\left(2x+\dfrac{1}{4}\right)^2+\dfrac{81}{16}>=-\dfrac{25}{16}+\dfrac{81}{16}=\dfrac{7}{2}\)

=>\(\dfrac{81}{16}>=y>=\dfrac{7}{2}\) 

\(y_{min}=\dfrac{7}{2}\) khi \(sin2x+\dfrac{1}{4}=\dfrac{5}{4}\)

=>\(sin2x=1\)

=>\(2x=\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=\dfrac{\Omega}{4}+k\Omega\)

\(y_{max}=\dfrac{81}{16}\) khi sin 2x=-1

=>\(2x=-\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=-\dfrac{\Omega}{4}+k\Omega\)

Phạm Trần Phát
11 tháng 12 2023 lúc 20:57

loading...

Nguyễn Ngọc Huyền
Xem chi tiết