phân tích đa thức thành nhân tử
(x+3)^4+(x+5)^4-16
phân tích đa thức thành nhân tử : (x+3)^4+(x+1)^4-16
Đặt \(A=\left(x+3\right)^4+\left(x+1\right)^4-16\)
\(=\left\lbrack\left(x+2\right)+1\right\rbrack^4+\left\lbrack\left(x+2\right)-1\right\rbrack^4-16\)
Đặt b=x+2
=>\(A=\left(b+1\right)^4+\left(b-1\right)^4-16\)
\(=\left(b^2+2b+1\right)^2+\left(b^2-2b+1\right)^2-16\)
\(=\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2-16\)
\(=2\left(b^2+1\right)^2+8b^2-16\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-8\right\rbrack\)
\(=2\left\lbrack b^4+2b^2+1+4b^2-8\right\rbrack=2\left(b^4+6b^2-7\right)\)
\(=2\left(b^2+7\right)\left(b^2-1\right)=2\left(b^2+7\right)\left(b-1\right)\left(b+1\right)\)
\(=2\left\lbrack\left(x+2\right)^2+7\right\rbrack\left(x+2-1\right)\left(x+2+1\right)=2\left(x+1\right)\left(x+3\right)\left\lbrack\left(x+2\right)^2+7\right\rbrack\)
Đặt \(A=\left(x+3\right)^4+\left(x+1\right)^4-16\)
\(=\left\lbrack\left(x+2\right)+1\right\rbrack^4+\left\lbrack\left(x+2\right)-1\right\rbrack^4-16\)
Đặt b=x+2
=>\(A=\left(b+1\right)^4+\left(b-1\right)^4-16\)
\(=\left(b^2+2b+1\right)^2+\left(b^2-2b+1\right)^2-16\)
\(=\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2-16\)
\(=2\left(b^2+1\right)^2+8b^2-16\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-8\right\rbrack\)
\(=2\left\lbrack b^4+2b^2+1+4b^2-8\right\rbrack=2\left(b^4+6b^2-7\right)\)
\(=2\left(b^2+7\right)\left(b^2-1\right)=2\left(b^2+7\right)\left(b-1\right)\left(b+1\right)\)
\(=2\left\lbrack\left(x+2\right)^2+7\right\rbrack\left(x+2-1\right)\left(x+2+1\right)=2\left(x+1\right)\left(x+3\right)\left\lbrack\left(x+2\right)^2+7\right\rbrack\)
phân tích đa thức thành nhân tử : x^4 +3x^3 +12x -16
\(x^4+3x^3+12x-16\)
\(=x^4+4x^3+4x^2+16x-x^3-4x^2-4x-16\)
\(=x\left(x^3+4x^2+4x+16\right)-\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left[x^2\left(x+4\right)+4\left(x+4\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+4\right)\)
Phân tích đa thức thành nhân tử : 4( x +5 ) (x + 6) (x+10 ) (x + 16) - 3x^2
phân tích đa thức thành nhân tử
(x+1)4+(x+5)4+16
phân tích đa thức thành nhân tử : (x+3)^4+(x+5)^4-2
Đặt A=\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left\lbrack\left(x+4\right)-1\right\rbrack^4+\left\lbrack\left(x+4\right)+1\right\rbrack^4-2\)
Đặt b=x+4
=>\(A=\left(b-1\right)^4+\left(b+1\right)^4-2\)
\(=\left(b^2-2b+1\right)^2+\left(b^2+2b+1\right)^2-2\)
\(=\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2-2\)
\(=2\left(b^2+1\right)^2+8b^2-2\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-1\right\rbrack\)
\(=2\cdot\left\lbrack b^4+2b^2+1+4b^2-1\right\rbrack=2\left(b^4+6b^2\right)=2b^2\left(b^2+6\right)\)
\(=2\left(x+4\right)^2\left\lbrack\left(x+4\right)^2+6\right\rbrack\)
phân tích đa thức thành nhân tử : (x+3)^4+(x+5)^4-2
Đặt A=\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
\(=\left\lbrack\left(x+4\right)-1\right\rbrack^4+\left\lbrack\left(x+4\right)+1\right\rbrack^4-2\)
Đặt b=x+4
=>\(A=\left(b-1\right)^4+\left(b+1\right)^4-2\)
\(=\left(b^2-2b+1\right)^2+\left(b^2+2b+1\right)^2-2\)
\(=\left(b^2+1\right)^2-4b\left(b^2+1\right)+4b^2+\left(b^2+1\right)^2+4b\left(b^2+1\right)+4b^2-2\)
\(=2\left(b^2+1\right)^2+8b^2-2\)
\(=2\left\lbrack\left(b^2+1\right)^2+4b^2-1\right\rbrack\)
\(=2\cdot\left\lbrack b^4+2b^2+1+4b^2-1\right\rbrack=2\left(b^4+6b^2\right)=2b^2\left(b^2+6\right)\)
\(=2\left(x+4\right)^2\left\lbrack\left(x+4\right)^2+6\right\rbrack\)
phân tích đa thức thành nhân tử
(x+2)(x+4)(x+6)(x+8)-16
Phân tích đa thức thành nhân tử
1.(x-3)^4+(x-1)^4-16
2.x^3.(x^2-7)^2-36x
Phân tích đa thức thành nhân tử:
x^4+10x^3+32x^2+40x+16
Ta có \(x^4+10x^3+32x^2+40x+16=\left(x^4+2x^3\right)+\left(8x^3+16x^2\right)+\left(16x^2+32x\right)+\left(8x+16\right)\)
\(=x^3\left(x+2\right)+8x^2\left(x+2\right)+16x\left(x+2\right)+8\left(x+2\right)\)
\(=\left(x+2\right)\left(x^3+8x^2+16x+8\right)=\left(x+2\right)\left(x+2\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\left(x^2+6x+4\right)\)