1) phân tích đa thức thành nhân tử chung
H=(x^2-x+1)(x^3+3x+1)+4x^2
Phân tích đa thức thành nhân tử ( đặt nhân tử chung )
1) X(x-1)+(1+x)2. 2) (x+1)2 -3(x+1) 3) 2x(x-2)-(x-2)2
4) 3x(x-1)2-(1-x)3 5) 3x(x+2)-5(x+2)2 6) 4x(x-y)+3(y-x)2
1: \(x\left(x-1\right)+\left(1+x\right)^2\)
\(=x^2-x+x^2+2x+1\)
\(=2x^2+x+1\)
Đa thức này ko phân tích được nha bạn
2: \(\left(x+1\right)^2-3\left(x+1\right)\)
\(=\left(x+1\right)\cdot\left(x+1\right)-\left(x+1\right)\cdot3\)
\(=\left(x+1\right)\left(x+1-3\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
3: \(2x\cdot\left(x-2\right)-\left(x-2\right)^2\)
\(=2x\left(x-2\right)-\left(x-2\right)\cdot\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
4: \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^2\cdot\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(4x-1\right)\)
5: \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\cdot3x-\left(x+2\right)\cdot\left(5x+10\right)\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(-2x-10\right)\left(x+2\right)\)
\(=-2\left(x+5\right)\left(x+2\right)\)
6: \(4x\left(x-y\right)+3\left(y-x\right)^2\)
\(=4x\left(x-y\right)+3\left(x-y\right)^2\)
\(=\left(x-y\right)\cdot4x+\left(x-y\right)\left(3x-3y\right)\)
\(=\left(x-y\right)\cdot\left(4x+3x-3y\right)\)
\(=\left(x-y\right)\left(7x-3y\right)\)
bài 1 phân tích đa thức thành nhân tử bàng phương pháp đặt nhân tử chung
1) 2x^2-4x
2) 3x-6y
3) x^2-3x
4) 4x^2-6x
5) x^3-4x
1) 2x2 - 4x = 2x( x - 2 )
2) 3x - 6y = 3( x - 2y )
3) x2 - 3x = x( x - 3 )
4) 4x2 - 6x = 2x( x - 3 )
5) x3 - 4x = x( x2 - 4 ) = x( x - 2 )( x + 2 )
1) \(2x^2-4x=2x\left(x-2\right)\)
2) \(3x-6y=3\left(x-2y\right)\)
3) \(x^2-3x=x\left(x-3\right)\)
4) \(4x^2-6x=2x\left(2x-3\right)\)
5) \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
1, \(2x^2-4x=2x\left(x-2\right)\)
2, \(3x-6y=3\left(x-2y\right)\)
3, \(x^2-3x=x\left(x-3\right)\)
4, \(4x^2-6x=2x\left(x-3\right)\)
5, \(x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử
\(e)x^3-x^2+x+3\)
\(f)2x^3-35x-75\)
\(g)3x^3-4x^2+13x-4\)
\(h)6x^3+x^2+x+1\)
\(i)4x^3+6x^2+4x+1\)
phân tích các đa thức thành nhân tử
a, H=(x^2-x+1)(x^3+3x+1)+4x^2
\(H=\left(x^2-x+1\right)\left(x^2+3x+1\right)+4x^2\)
Đặt \(x^2+1=t\), ta được:
\(H=\left(t-x\right)\left(t+3x\right)+4x^2\)
\(H=t^2+2xt+x^2\)
\(H=\left(t+x\right)^2\)
\(H=\left(x^2+x+1\right)^2\)
Vậy.......
phân tích đa thức thành phân tử(đặt nhân tử chung)
3x(x+1)^2-5x^2(x+1)+7(x+1)
\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)
\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)
Phân tích các đa thức sau thành nhân tử: (3x - 2)(4x - 3) (2 - 3x )(x - 1) - 2(3x - 2)( x +1)
Phân tích đa thức thành nhân tử
e)x^3−x^2+x+3
g)3x^3−4x^2+13x−4
h)6x^3+x^2+x+1
i)4x^3+6x^2+4x+1
e) \(=x^2\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^2-2x+3\right)\)
g) \(=x^2\left(3x-1\right)-x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(x^2-x+4\right)\)
h) \(=3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
i) \(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(2x^2+2x+1\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
bài 1 tìm x bt
a) 9 (4x+3)^2=16(3x-5)^2
b) (x-3)^2=4x^2-20x+25
bài 2 phân tích đa thức sau thành nhân tử chung
a) (a-b) . (a^2-c^2)-(a-c) (a^2-b^2)
b) -x^8-4x^4+5
Bài 1.
\(a\Big) 9(4x+3)^2=16(3x-5)^2\\\Leftrightarrow 9[(4x)^2+2\cdot 4x\cdot3+3^2]=16[(3x)^2-2\cdot3x\cdot5+5^2]\\\Leftrightarrow9(16x^2+24x+9)=16(9x^2-30x+25)\\\Leftrightarrow 144x^2+216x+81=144x^2-480x+400\\\Leftrightarrow (144x^2-144x^2)+(216x+480x)=400-81\\\Leftrightarrow 696x=319\\\Leftrightarrow x=\dfrac{11}{24}\\Vậy:x=\dfrac{11}{24}\\---\)
\(b\Big)(x-3)^2=4x^2-20x+25\\\Leftrightarrow(x-3)^2=(2x)^2-2\cdot2x\cdot5+5^2\\\Leftrightarrow(x-3)^2=(2x-5)^2\\\Leftrightarrow (x-3)^2-(2x-5)^2=0\\\Leftrightarrow (x-3-2x+5)(x-3+2x-5)=0\\\Leftrightarrow (-x+2)(3x-8)=0\\\Leftrightarrow \left[\begin{array}{} -x+2=0\\ 3x-8=0 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} -x=-2\\ 3x=8 \end{array} \right.\\\Leftrightarrow \left[\begin{array}{} x=2\\ x=\dfrac{8}{3} \end{array} \right.\\Vậy:...\)
Sử dụng phương pháp đặt nhân tử chung phân tích các đa thức sau thành nhân tử.( nhớ rút gọn)
1) x (x . 1 )+( 1 - x )^2
2) 2x ( x - 2 )-(x - 2 )^2
3) 3x ( x - 1)^2 - ( 1 - x )^3
4) 3x ( x + 2 ) - 5 (x + 2)^2
1) \(x\left(x-1\right)+\left(1-x\right)^2\)
\(=x\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x+x-1\right)\)
\(=\left(x-1\right)\left(2x-1\right)\)
2) \(2x\left(x-2\right)-\left(x-2\right)^2\)
\(=\left(x-2\right)\left[2x-\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
3) \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=\left(x-1\right)^2\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\left(4x-1\right)\)
4) \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\left[3x-5\left(x+2\right)\right]\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(x+2\right)\left(-2x-10\right)\)
\(=-2\left(x+2\right)\left(x+5\right)\)