Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Anh
Xem chi tiết
Nguyễn Thanh Hằng
28 tháng 1 2021 lúc 12:05

 Gọi \(M\left(x_o;y_o\right)\) là điểm cố định mà đường thẳng \(\left(dm\right):y=mx-2m+1\) luôn đi qua 

\(\Leftrightarrow y_o=mx_o+2m+1\)

\(\Leftrightarrow m\left(x_o+2\right)+1-y_o=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+2=0\\1-y_o=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-2\\y_o=1\end{matrix}\right.\)

\(\Leftrightarrow M\left(-2;1\right)\) là điểm cố định mà đường thẳng \(\left(dm\right)\) luôn đi qua \(\left(đpcm\right)\)

vũ anh thư
Xem chi tiết
Nguyễn Ngọc Anh Minh
5 tháng 12 2023 lúc 16:50

Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)

\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)

\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)

\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)

Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)

Lê Song Phương
5 tháng 12 2023 lúc 16:45

Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)

Theo đề bài, ta có:

\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m

\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)

Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.

top elsu hà nội
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 9 2021 lúc 15:20

Chắc hàm là \(y=\left(m+1\right)x+m-1\)

Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:

\(y_0=\left(m+1\right)x_0+m-1\)

\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)

Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)

????????????????
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 21:54

y=m(x-2)+1

=>m(x-2)-y+1=0

Điểm mà (d) luôn đi qua có tọa độ là:

x-2=0 và 1-y=0

=>x=2 và y=1

Nguyễn Haanh
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 15:54

Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)

\(\Rightarrow\) Với mọi m ta có:

\(y_0=\left(m+1\right)x_0-3m+4\)

\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)

Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)

KHANH QUYNH MAI PHAM
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Quang Thiệp
Xem chi tiết
Q Player
24 tháng 11 2021 lúc 17:13

Gọi A(xo;yo) là điểm cố định mà đths trên luôn đi qua với ∀m

Do đó pt sau luôn đúng với∀m

 yo=mxo-2m-4

⇔yo+4 = mxo-2m

Vì pt trên đúng với ∀ m nên: yo+4=0⇔yo=-4

                                              xo-2=0⇔xo=2

33. Nguyễn Minh Ngọc
Xem chi tiết
Lê Song Phương
6 tháng 2 2022 lúc 14:49

Gọi điểm cố định mà đường thẳng \(y=\left(m-1\right)x+m+1\) luôn đi qua là \(A\left(x_0;y_0\right)\)

Thay \(x=x_0;y=y_0\)vào hàm số \(y=\left(m-1\right)x+m+1\), ta có:

\(y_0=\left(m-1\right)x_0+m+1\)\(\Leftrightarrow y_0=mx_0-x_0+m+1\)\(\Leftrightarrow m\left(x_0+1\right)-x_0-y_0+1=0\)(*)

Vì phương rình (*) luôn phải có nghiệm đúng với mọi m nên ta có \(\hept{\begin{cases}x_0+1=0\\1-x_0-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\1-\left(-1\right)-y_0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x_0=-1\\y_0=2\end{cases}}\)

Vậy khi m thay đổi thì đường thẳng \(y=\left(m-1\right)x+m+1\)luôn đi qua điểm \(A\left(-1;2\right)\)cố định.

Khách vãng lai đã xóa