-50x^2y^2+2*(x-y)^2
3 Tính giá trị của biểu thức :
a) 15x^4-7x^4+(-20x^2)^2 với x=-1 ; b) 23x^2y^3+17x^3y^3+(-50x^2)y^3 với x=1;y=-1
a)\(15x^4-7x^4+\left(-20x^2\right)^2\) với x= -1
\(15x^4-7x^4+\left(-20x^2\right)^2\) = \(15x^4-7x^4-400x^4=-392x^4\)
Thay x= -1 vào biểu thức trên ta được: \(-392x^4=-392.\left(-1\right)^4=-392\)
Vậy giá trị của biểu thức trên với x= -1 là -392.
b) \(23x^2y^3+17x^3y^3+\left(-50x^2\right)y^3\) với x= 1; y= -1\(23x^2y^3+17x^3y^3+\left(-50x^2\right)y^3=23x^2y^3+17x^3y^3-50x^2y^3=17x^3y^3-27x^2y^3\)
Thay x=1 và y= -1 và biểu thức trên ta được:
\(17x^3y^3-27x^2y^3=10\)
Vậy giá trị của biểu thức trên với x=1 và y= -1 là 10
Bài 1: Tính:
a)\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}-\dfrac{2y^2}{y^2-x^2}\)
b)\(\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3}-\dfrac{x}{3x+9}\right)\)
Bài 2: Tìm x:
a)2x\(^3\)-50x=0 b)\(x^3+x^2+x+a\) chia hết cho x+1
Bài 3: Cho △MNP vuông tại N, biết MN = 6cm, NP = 8cm. đường cao NH, qua H kẻ HC⊥MN, HD⊥NP
a) Chứng minh HDNC là hình chữ nhật.
b) Tính CD
c) Tính diện tích △NMH
Bài 1:
\(a,=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+2y^2}{2\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{2\left(x-y\right)\left(x+y\right)}=\dfrac{y}{x-y}\\ b,Sửa:\left(\dfrac{9}{x^3-9x}+\dfrac{1}{x+3}\right):\left(\dfrac{x-3}{x^2+3x}-\dfrac{x}{3x+9}\right)\\ =\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\dfrac{3x-9-x^2}{3x\left(x+3\right)}=\dfrac{x^2+3x+9}{x\left(x-3\right)\left(x+3\right)}\cdot\dfrac{-3x\left(x+3\right)}{x^2-3x+9}\\ =\dfrac{-3}{x-3}\)
Bài 2:
\(a,\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\\ b,\Leftrightarrow x^3+x^2+x+a=\left(x+1\right)\cdot a\left(x\right)\\ \text{Thay }x=-1\Leftrightarrow-1+1-1+a=0\Leftrightarrow a=1\)
thực hiện phép tính
\(\sqrt{50x^3y^5}-\frac{2y^2}{x^2}\sqrt{32x^7y}+\frac{3xy}{2}\sqrt{2xy^3},x>0,y>0\)
3 Tính giá trị của biểu thức :
a) 15x^4-7x^4+(-20x^2)^2 với x=-1 ; b) 23x^2y^3+17x^3y^3+(-50x^2)y^3 với x=1;y=-1
\(-50x^2y^2+2\left(x-y\right)^2\)
\(x^{m+4}+x^{m+3}-x-1\)
giúp mình phân tích hai đa thức sau thành nhân tử nha. Cám ơn mấy bạn
25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên
giúp mình chứng minh nha . Cám ơn mấy bạn
Bài1: Phân tích đa thức thành nhân tử:
a) x2-y2-2x+2y b)4x2+8xy-3x-6y
c) 54x3-16y3 d) -50x2y2+2(x-y)2
HELP ME!MK SẼ TICK CHO NHA.CẢM ƠN TRƯỚC.
a. \(x^2-y^2-2x+2y\)
=> \(\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
=> \(\left(x-y\right)\left(x+y-2\right)\)
b. \(4x^2+8xy-3x-6y\)
=> \(4x\left(x+2y\right)-3\left(x+2y\right)\)
=> \(\left(4x-3\right)\left(x+2y\right)\)
Còn nhớ mk hơm vậy ??
\(a,x^2-y^2-2x+2y\)
\(=\left(x^2-y^2\right)-\left(2x-2y\right)\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(b,4x^2+8xy-3x-6y\)
\(=\left(4x^2-3x\right)+\left(8xy-6y\right)\)
\(=x\left(4x-3\right)+2y\left(4x-3\right)\)
\(=\left(x+2y\right)\left(4x-3\right)\)
tính:
f(x)= x^6 - 50x^5+50x^4-50x^3+50x^2-50x+50 tại x=49
f(x)= x^6 - 50x^5+50x^4-50x^3+50x^2-50x+50 tại x=49
<=> \(f_{\left(49\right)}\)= 49^6 - 50.49^5+50.49^4-50.49^3+50.49^2-50.49+50
<=> \(f_{\left(49\right)}\)= 13519544083, 0396489851
Giúp với ạ:
Rút gọn biểu thức:
\(50x^3y^5\)\(-\frac{2y^2}{x^2}\)\(\sqrt{32x^7y}\)\(+\frac{3xy}{2}\)\(\sqrt{2xy^3}\)(x>0 , y>0)
k mình đi mình sẽ giúp, mình rất cần người như cậu Ngân
B4: Rút gọn biểu thức:
a, \(\dfrac{x^2}{y^2}\div\sqrt{\dfrac{x^2}{y^4}}\) với x,y \(\ne\) 0
b, \(\sqrt{\dfrac{27(x-1)^2}{12}}+\dfrac{3}{2}-(x-2)\sqrt{\dfrac{50x^2}{8(x-2)^2}}\) với 1<x<2
a) Ta có: \(\dfrac{x^2}{y^2}:\sqrt{\dfrac{x^2}{y^4}}\)
\(=\dfrac{x^2}{y^2}:\dfrac{x}{y^2}\)
=x
b) Ta có: \(\sqrt{\dfrac{27\left(x-1\right)^2}{12}}+\dfrac{3}{2}-\left(x-2\right)\sqrt{\dfrac{50x^2}{8\left(x-2\right)^2}}\)
\(=\sqrt{\dfrac{9}{4}}\cdot\sqrt{\left(x-1\right)^2}+\dfrac{3}{2}-\left(x-2\right)\cdot\sqrt{\dfrac{25}{4}}\cdot\sqrt{\dfrac{x^2}{\left(x-2\right)^2}}\)
\(=\dfrac{3}{2}\cdot\left(x-1\right)+\dfrac{3}{2}-\left(x-2\right)\cdot\dfrac{5}{2}\cdot\dfrac{x}{2-x}\)
\(=\dfrac{3}{2}x-\dfrac{3}{2}+\dfrac{3}{2}-\dfrac{5}{2}\left(x-2\right)\cdot\dfrac{-x}{x-2}\)
\(=\dfrac{3}{2}x+\dfrac{5}{2}\cdot\left(x\right)\)
=4x