cho tam giác vuông ABC ab=3
góc B=30 độ
giải tam giác ABC
cho tam giác ABC vuông ở B có AB=2, góc BAC = 30 độ. Giải tam giác vuông ABC.
Ta có:
\(\widehat{B}=180^o-90^o-30^o=60^o\)(tổng 3 góc trong tam giác)
\(AC=2BC\)(cạnh đối diện góc 30 độ)
Áp dụng định lý Pytago
\(AC^2=BC^2+AB^2\)
\(3BC^2=4\Rightarrow BC=\dfrac{2\sqrt{3}}{3}\)\(\Rightarrow AC=\dfrac{4\sqrt{3}}{3}\)
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A có góc B = 30 độ, AB = 6cm
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH và trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM
a: \(\widehat{C}=60^0\)
\(AC=6\sqrt{3}\left(cm\right)\)
\(BC=12\sqrt{3}\left(cm\right)\)
Cho tam giác abc ( a=90 độ). giải tam giác vuông abc biết a)AB =30cm , acb=30 độ b) AB=20cm ;AC=13cm
a.
Trong tam giác vuông ABC:
\(tan\widehat{ACB}=\dfrac{AB}{AC}\Rightarrow AC=AB.tan\widehat{ACB}=30.tan30^0=10\sqrt{3}\left(cm\right)\)
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=20\sqrt{3}\left(cm\right)\)
\(\widehat{ABC}=90^0-\widehat{ACB}=60^0\)
b.
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{569}\left(cm\right)\)
\(tan\widehat{ABC}=\dfrac{AC}{AB}=\dfrac{13}{20}\Rightarrow\widehat{ABC}\approx33^0\)
\(\widehat{ACB}=90^0-\widehat{ABC}=57^0\)
Cho tam giác ABC vuông tại A , góc B = 30 độ , AB = 6cm.
a) giải tam giác ABC.
b) vẽ đường cao AH , trung tuyến AM của tam giác ABC. Tính diện tích tam giác AHM.
Cho tam giác ABC vuông tại A, biết AB = 8cm ; 𝐵̂ = 30 độ a) Giải tam giác ABC b) Kẻ phân giác AD. Đường cao AH. Tính diện tích tam giác ADH
a: Ta có: ΔABC vuông tại A
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
\(=\dfrac{8\sqrt{3}}{3}\left(cm\right)\)
\(\Leftrightarrow BC=\dfrac{16\sqrt{3}}{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A có B=30 độ ,AB=6cm
a, giải tam giác vuông ABC
cho tam giác ABC có góc A=180−3góc và góc B=70
a.Tính các góc của tam giác ABC
b.Vẽ tia phân giác của góc B cắt AC tại E.Qua E kẻ đường thẳng song song với BC cắt AB tại D.CMR:ED là tia phân giác của góc AEB