Tính: A=\(x^3y-xy^3\)
Biết: x=\(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
y=\(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Tính giá trị biểu thức B=xy^3-x^3y biết x=\(\frac{1}{\sqrt[3]{2}+2+\sqrt[3]{4}}\) và y=\(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
đặt \(\sqrt[3]{2}\)=a \(\Rightarrow\)a3=2, ta có:
x=\(\frac{1}{a+a^2+a^3}\)=\(\frac{a-1}{a\cdot\left(a^3-1\right)}\)=\(\frac{a-1}{a}\)
y=\(\frac{6}{a^4-a^3+a^2}\)=\(\frac{6\cdot\left(a+1\right)}{a^2\left(a^3+1\right)}\)=\(\frac{2\left(a+1\right)}{a^2}\)=\(\sqrt[3]{2}\cdot\left(a+1\right)\)
THeo cách đặt thì tính được x,y. Sau đó thay vào B thì tính được bạn nhé
\(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\); \(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\).tính giá trị của A=\(xy^3-x^3y\)
Đặt \(a=2^{\frac{1}{3}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{a}{a^2+a+1}\\y=\frac{a}{a^2-a+1}\end{cases}}\)
\(A{=xy(y^2-x^2)\\=xy(y+x)(y-x)\\=\dfrac{a^2}{a^4+a^2+1}\dfrac{2a^3+2a}{a^4+a^2+1}\dfrac{2a^2}{a^4+a^2+1}\\=\dfrac{8a^2(a^2+1)}{(a+1)^6}\\=\dfrac{8a^2(a^2+1)}{(a^3+3a^2+3a+1)^2}\\=\dfrac{8a^2(a^2+1)}{9(a^2+a+1)^2}}\)
Vì \(\left(a-1\right)\left(a^2+a+1\right)=a^3-1=1\). khi đó
\(A=\dfrac{8}{9}a^2(a^2+1)(a-1)^2=\dfrac{8}{9}a^2(a^4-2a^3+a^2+a^2-2a+1)=\dfrac{8}{9}a^2(2a^2-3)=\dfrac{8}{9}(4a-3a^2)\)
Tính \(A=x^3y-xy^3\) với \(x=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}};y=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\)
Cho \(x=\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\) và \(y=\frac{6}{3\sqrt[3]{2}-2\sqrt[3]{4}}\) . Tính giá trị \(A=xy^3+x^3y\)
cho x= \(\frac{2}{2\sqrt[3]{2}+2+\sqrt[3]{4}}\), y= \(\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}\)
Tính \(xy^3-x^3y\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
1. Tính:
a) A= \(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)(dấu căn đầu tiên là của cả biểu thức)
b) B= \(\frac{2}{\sqrt{3}}+\frac{\sqrt{2}}{3}+\frac{2}{\sqrt{3}}.\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}\)
2. Cho:
A= \(\left(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right):\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)với x>0, y>0
a) Rút gọn A
b) Cho xy=16. Tìm x,y để A có GTNN. Tìm Gt đó
Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho.
vào chữ fx rồi chọn biểu tượng phân số là xong
Rút gọn biểu thức sau
a/ A=\(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}+\frac{x-y}{\sqrt{x}-\sqrt{y}}\)Với x>0 ; y>0 ;x#y
b/ B=\(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
c/ C=\(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
d/ D=\(\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{6-3\sqrt{3}}\)