Giải phương trình : ( x - 17 )/1997 + ( x - 21 )/1993 + ( x + 2 )/1008 = 4
Giải hộ
tìm x: x-17/1997 + x-21/1993+ x+2/1008=4
giúp vs ạ
\(\dfrac{x-17}{1997}+\dfrac{x-21}{1993}+\dfrac{x+2}{1008}=4\)
\(\Leftrightarrow\dfrac{x-17}{1997}-1+\dfrac{x-21}{1993}-1+\dfrac{x+2}{1008}-2=0\)\(\Leftrightarrow\dfrac{x-2014}{1997}+\dfrac{x-2014}{1993}+\dfrac{x-2014}{1008}=0\) \(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{1993}+\dfrac{1}{1997}+\dfrac{1}{1008}\right)=0\)vì \(\dfrac{1}{1993}+\dfrac{1}{1997}+\dfrac{1}{1008}\ne0\Rightarrow x-2014=0\Rightarrow x=2014\)
Giải phương trình : \(\frac{x+5}{1999}+\frac{x+7}{1997}=\frac{x+9}{1999}+\frac{x+11}{1993}\)
Giải phương trình
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}=\frac{x+7}{1997}+\frac{x+9}{1995}+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}-\frac{x+2004}{1997}-\frac{x+2004}{1995}-\frac{x+2004}{1993}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\) ( do \(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}+\frac{1}{1997}+\frac{1}{1995}+\frac{1}{1993}\ne0\))
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{2003}\)\(+\)\(\frac{x+3}{2001}\)\(+\)\(\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+\frac{x+9}{1995}\)\(+\frac{x+11}{1993}\)
\(\Leftrightarrow\)\(\frac{x+1}{2003}\)\(+1+\)\(\frac{x+3}{2001}\)\(+1+\frac{x+5}{1999}\)= \(\frac{x+7}{1997}\)\(+1+\frac{x+9}{1995}\)\(+1+\frac{x+11}{1993}\)
\(\Leftrightarrow\frac{x+2004}{2003}\)\(+\frac{x+2004}{2001}\)\(+\frac{x+2004}{1999}\)\(-\frac{x+2004}{1997}\)\(-\frac{x+2004}{1995}\)\(-\frac{x+2004}{1993}\)\(=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì tích kia có kết quả khác 0)
\(\Leftrightarrow x=-2004\)
Vậy PT có tập nghiệm S = {-2004}
\(\frac{x+1}{2003}+1+\frac{x+3}{2001}+1+\frac{x+5}{1999}+1=\frac{x+7}{1997}+1+\frac{x+9}{1995}+1+\frac{x+11}{1993}+1\)
<=>\(\frac{x+2004}{2003}+\frac{x+2004}{2001}+\frac{x+2004}{1999}=\frac{x+2004}{1997}+\frac{x+2004}{1995}+\frac{x+2004}{1993}\)
<=>\(\left(x+2004\right)\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
Mà \(\left(\frac{1}{2003}+\frac{1}{2001}+\frac{1}{1999}-\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)< 0\)
=> X+2004=0
=>X=-2004
Giải phương trình
\(\frac{x+1}{2003}+\frac{x+3}{2001}+\frac{x+5}{1999}-\frac{x+7}{1997}-\frac{x+9}{1995}-\frac{x+11}{1993}=0\)
Giải các phương trình sau ( biếnđổi đặc biệt)
(x+6)/1999 +(x+8)/1997=(x+10)/1995+(x+12)/1993
(x-85)/15 + (x-74)/13 +(x-67)/11 + (x-64)/9 =10 (chú ý 10=1+2+3+4 )
kết quả của dãy tính sau có tận cùng là chữ số nao ?
1991 x 1992 x 1993 x 1994 + 1995 x 1996 x 1997 x 1998 x 1999 ( trình bày hộ nha )
Vì 1x 2 x 3 x 4 có tận cùng là 4 , 5 x 6 x 7 x8 x 9 có tận cùng là 0 mà 4 + 0 =4 nên 1991 x 1992 x 1993 x 1994 + 1995 x 1996 x1997 x 1998 x1999 có tận cung là 4
\(1991.1992.1993.1994.1995.1996.1997.1998.1999\)
\(=\left(.....1\right).\left(.....2\right).\left(......3\right).\left(.......4\right).\left(.........5\right).\left(.......6\right).\left(......7\right).\left(......8\right).\left(......9\right)\)
\(=\left(......2\right).\left(.....3\right)\left(....4\right)\left(.....5\right)\left(....6\right)\left(.....7\right)\left(....8\right)\left(......9\right)\)
\(=\left(....6\right)\left(.....4\right)\left(....5\right)\left(....6\right)\left(....7\right)\left(.....8\right)\left(.....9\right)\)
\(=\left(....24\right)\left(....5\right)\left(....6\right)\left(....7\right)\left(....8\right)\left(....9\right)\)
\(=\left(.....0\right)\left(....6\right)\left(....7\right)\left(.....8\right)\left(.....9\right)\)
\(=\left(....0\right)\left(....7\right)\left(....8\right)\left(....9\right)\)
\(=\left(.....0\right)\left(....8\right)\left(...9\right)\)
\(=\left(...0\right)\left(....9\right)\)
\(=\left(....0\right)\)
Vậy 1991 x 1992 x 1993 x 1994 x 1995 x 1996 x 1997 x 1998 x 1999 có chữ số tận cùng là 0
\(\frac{x+6}{1999}\)+ \(\frac{x+8}{1997}\)= \(\frac{x+10}{1995}\)+ \(\frac{x+12}{1993}\)
Giải phương trình sau :
\(\frac{x+6}{1999}+\frac{x+8}{1997}=\frac{x+10}{1995}+\frac{x+12}{1993}\)
\(\Leftrightarrow\frac{x+6}{1999}+1+\frac{x+8}{1997}+1=\frac{x+10}{1995}+1+\frac{x+12}{1993}+1\)
\(\Leftrightarrow\frac{x+2005}{1999}+\frac{x+2005}{1997}=\frac{x+2005}{1995}+\frac{x+2005}{1993}\)
\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x+2005=0\left(\frac{1}{1999}+\frac{1}{1997}-\frac{1}{1995}-\frac{1}{1993}\ne0\right)\)
<=> x=-2005
Vậy x=-2005
bạn chỉ cần cộng mỗi phân số với 1 là xong!
Vd: x+6/1999 +1 +x+8/1997 +1 = x+10/1995 +1 +x+12/1993 +1
(không quen sử dụng cái phần mềm này lắm nên mình không làm nốt được)
giải pt
\(\dfrac{x-17}{1998}+\dfrac{x-21}{1994}+\dfrac{x+1}{1008}\text{=}4\)
`[x-17]/1998+[x-21]/1994+[x+1]/1008=4`
`<=>[x-17]/1998-1+[x-21]/1994-1+[x+1]/1008-2=0`
`<=>[x-2015]/1998+[x-2015]/1994+[x-2015]/1008=0`
`<=>(x-2015)(1/1998+1/1994+1/1008)=0`
`=>x-2015=0`
`<=>x=2015`
\(\dfrac{x-17}{1998}+\dfrac{x-21}{1994}+\dfrac{x+1}{1008}\text{=}4\)
\(\Leftrightarrow\dfrac{x-17}{1998}+\dfrac{x-21}{1994}+\dfrac{x+1}{1008}-4\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x-17}{1998}-1\right)+\left(\dfrac{x-21}{1994}-1\right)+\left(\dfrac{x+1}{1008}-2\right)\text{=}0\)
\(\Leftrightarrow\left(\dfrac{x-2015}{1998}\right)+\left(\dfrac{x-2015}{1994}\right)+\dfrac{x-2015}{1008}\text{=}0\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{1998}+\dfrac{1}{1994}+\dfrac{1}{1008}\right)\text{=}0\)
\(\Leftrightarrow\left(x-2015\right)\text{=}0\)
\(\Leftrightarrow x\text{=}2015\)
\(vay...\)
x + \(\sqrt{x^2-1}\) = \(\sqrt{x+1}\) + \(\sqrt{x-1}\) + 4
Giải phương trình
Lời giải:
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x+1}=a; \sqrt{x-1}=b$ (ĐK: $a,b\geq 0$)
PT đã cho trở thành:
$\frac{a^2+b^2}{2}+ab=a+b+4$
$\Leftrightarrow a^2+b^2+2ab=2(a+b)+8$
$\Leftrightarrow (a+b)^2-2(a+b)-8=0$
$\Leftrightarrow (a+b-4)(a+b+2)=0$
Với $a\geq 0; b\geq 0$ thì $a+b+2\geq 2>0$
$\Rightarrow a+b-4=0$
$\Leftrightarrow a+b=4$
$\Leftrightarrow \sqrt{x+1}+\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x+1}=4-\sqrt{x-1}$
$\Rightarrow x+1=15+x-8\sqrt{x-1}$ (bp 2 vế)
$\Leftrightarrow 14=8\sqrt{x-1}$
$\Leftrightarrow x-1=(\frac{7}{4})^2=\frac{49}{16}$
$\Leftrightarrow x=\frac{65}{16}$ (tm)