Lời giải:
ĐKXĐ: $x\geq 1$
Đặt $\sqrt{x+1}=a; \sqrt{x-1}=b$ (ĐK: $a,b\geq 0$)
PT đã cho trở thành:
$\frac{a^2+b^2}{2}+ab=a+b+4$
$\Leftrightarrow a^2+b^2+2ab=2(a+b)+8$
$\Leftrightarrow (a+b)^2-2(a+b)-8=0$
$\Leftrightarrow (a+b-4)(a+b+2)=0$
Với $a\geq 0; b\geq 0$ thì $a+b+2\geq 2>0$
$\Rightarrow a+b-4=0$
$\Leftrightarrow a+b=4$
$\Leftrightarrow \sqrt{x+1}+\sqrt{x-1}=4$
$\Leftrightarrow \sqrt{x+1}=4-\sqrt{x-1}$
$\Rightarrow x+1=15+x-8\sqrt{x-1}$ (bp 2 vế)
$\Leftrightarrow 14=8\sqrt{x-1}$
$\Leftrightarrow x-1=(\frac{7}{4})^2=\frac{49}{16}$
$\Leftrightarrow x=\frac{65}{16}$ (tm)