Hãy tìm một số chính phương có 4 chữ số dạng abab
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó. Ta có: - Số 14 không phải là số chính phương - Số là số chính phương vì 144=12^2- Số 1444 là số chính phương vì 1444=38^2. Bạn hãy tìm tất cả các số có dạng 144...4(số có các chữ số 4 sau chữ số 1) mà là số chính phương?
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số 14 không phải là số chính phương
- Số 144 là số chính phương vì 144=12.12
- Số là số chính phương vì .1444=38.38
Bạn hãy tìm tất cả các số có dạng 144....4 (số có các chữ số 4 sau chữ số 1) mà là số chính
Bài toán 104
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số \(14\) không phải là số chính phương
- Số \(144\) là số chính phương vì \(144=12\times12=12^2\)
- Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .
Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?
----------------------
Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.
Xem thêm:
Bài toán 103Bài toán 102Bài toán 101Bài toán 100Bài toán 99Hoàng Thị Thu Huyền Gửi ý kiến 23 bình luận
Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:
a, $n<4$n<4
Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.
b, $n\ge4$n≥4
Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(b∈Z)
Vì $10000\vdots16$10000⋮16 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12
Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an⋮4 nhưng không chia hết cho 16 nên:
$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$⇒ $a_n$an chia 16 dư 4. Vô lý.
Vậy $a_n$an không phải là số chính phương.
Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
1) Hãy tìm tất cả các số chính phương có 4 chữ số có dạng abcd
tìm số chính phương có dạng abab (nhớ giải thích rõ)
Bị lộn đề.tìm số chính phương NHỎ NHẤT dạng abab
Bài tập 7: Cho A là số chính phương gồm 4 chữ số. Nếu ta thêm vào mỗi chữ số của A một đơn vị thì ta được số chính phương B. Hãy tìm các số A và B.
Bài tập 8: Tìm một số có 4 chữ số vừa là số chính phương vừa là một lập phương.
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó .
- Số 14 không phải là số chính phương .
- Số 144 là số chính phương vì 144 = 122
- Số 1444 là số chính phương vì 1444 = 382
Bạn hãy tìm tât cả các số có dạng 144...4 ( số các chữ số 4 sau chữ số 1 ) mà là số chính phương
Nhanh nhé mấy bạn . Cần gấp lắm . Lắm rồi mình tick cho !
Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.
Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.
b,n>4
Ta có : an=144..4=10000b+4444(bεZ)
Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12
Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.
Vậy an không phải là số chính phương.
Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương
Có j thì bạn tham khảo ở đây: Bài toán 104
Mình ko có nhá
Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.
Ta có:
- Số \(14\) không phải là số chính phương
- Số \(144\) là số chính phương vì \(144=12\times12=12^2\)
- Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .
Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?
1/ tìm số tự nhiên để các số sau là số chính phương
C = 2n+ 1 va D= 3n +1
2/ Tìm số chính phương có 4 chữ số gồm có 4 chữ số 0 ,2 ,3 ,5
3/ chứng minh rằng các số sau không phải là số chính phương
b, B =101000+112000 +163000
c,C =abab
d,D =abcabc
tìm số chính phương có 4 chữ số biết chữ số hàng nghìn bằng chữ số hàng đơn vị và số chính phương đó viết được dưới dạng 5n + 4( n thuộc N*