Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hà quyên
Xem chi tiết
Jiwon
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 11 2021 lúc 7:59

\(P=5\sqrt{a}+7\sqrt{a}-8\sqrt{a}=4\sqrt{a}\\ Q=\left[2+\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right]\left[2-\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right]\\ Q=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a\)

Forever Love
Xem chi tiết
OPM Deadpool
10 tháng 7 2017 lúc 8:02

1.\(5\sqrt{a}+6\sqrt{a.\frac{1}{4}}-\sqrt{a^2.\frac{4}{a}}+\sqrt{5}=5\sqrt{a}+6.\frac{1}{2}\sqrt{a}-2\sqrt{a}\)+\(\sqrt{5}\)

bạn tự làm nốt các câu này và làm tương tự các câu kia nhé!!Nếu khó chỗ nào hãy nhắn tin cho mk!! hihi

Forever Love
10 tháng 7 2017 lúc 8:29

Thanks

Trần thị vân
Xem chi tiết
Huong San
25 tháng 8 2018 lúc 21:31

\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)

\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)

Nếu \(a\ge0\) thì giá trị của biểu thức là:

\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)

Nếu a<0 thì giá trị của biểu thức là:

\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)

\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)

An Đinh Khánh
Xem chi tiết
An Đinh Khánh
26 tháng 6 2023 lúc 15:44

câu a ở phần mẫu của cụm đầu tiên cái \(\left(\sqrt{a+\sqrt{b}}\right)^2\rightarrow\left(\sqrt{a}+\sqrt{b}\right)^2\) giúp em với ạ ( em cảm ơn )

Gia Huy
26 tháng 6 2023 lúc 16:02

a

\(=\dfrac{a-2\sqrt{ab}+b+4\sqrt{ab}}{a+2\sqrt{ab}+b-4\sqrt{ab}}.\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}.\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2.\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2}\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}\)

hải anh thư hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 11:35

a: \(A=\left(\dfrac{\left(x-4\right)\left(\sqrt{x}+2\right)-x\sqrt{x}+8}{x-4}\right):\dfrac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)

\(=\dfrac{x\sqrt{x}+2x-4\sqrt{x}-8-x\sqrt{x}+8}{x-4}\cdot\dfrac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\dfrac{2x-4\sqrt{x}}{\sqrt{x}-2}\cdot\dfrac{1}{x-2\sqrt{x}+4}=\dfrac{2\sqrt{x}}{x-2\sqrt{x}+4}\)

b: \(A-1=\dfrac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}\)

\(=\dfrac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+4}=\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}< 0\)

=>A<1

c: \(2\sqrt{x}>=0;x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3>0\)

=>A>=0 với mọi x thỏa mãn  ĐKXĐ

mà A<1

nên 0<=A<1

=>Để A nguyên thì A=0

=>x=0

nguyen le duy hung
Xem chi tiết
Không Tên
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Nguyễn Phương Linh
Xem chi tiết
Phùng Khánh Linh
13 tháng 8 2018 lúc 19:51

Tớ làm nốt nè :3

\(1b.3\sqrt{2}+4\sqrt{8}-\sqrt{18}=3\sqrt{2}+8\sqrt{2}-3\sqrt{2}=8\sqrt{2}\)

\(c.\dfrac{1}{2+\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}=\dfrac{2-\sqrt{3}+2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=4\)

\(2a.\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow4x^2-4x+1=9\)

\(\Leftrightarrow4x^2+4x-8x-8=0\)

\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

\(b.\sqrt{4x-4}-\sqrt{9x-9}+5\sqrt{x-1}=7\left(x\ge1\right)\)

\(\Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}+5\sqrt{x-1}=7\)

\(\Leftrightarrow4\sqrt{x-1}=7\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{4}\)

\(\Leftrightarrow x=\dfrac{65}{16}\)

c. Sai đề.

Huong San
13 tháng 8 2018 lúc 9:41

Trưa hoặc tối t giúp c nhé

Ami Yên
13 tháng 8 2018 lúc 18:39

1) Rút gọn biểu thức:

a) \(\sqrt{25a}+\sqrt{49a}-\sqrt{64a}\left(a\ge0\right)\)

=\(5\sqrt{a}+7\sqrt{a}-8\sqrt{a}\)

=\(4\sqrt{a}\)

Mình giải một bài chút mình về giải tiếp nha haha

Phạm Thị Thùy Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 8 2021 lúc 13:27

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)