cho hình thang ABCD.đáy nhỏ AB là 30cm .đáy lớn CD là 45cm. hai đường chéo của hình thang cắt nhau tại O. a, tìm tỉ số OA với OC.
b,từ O kẻ đường thẳng song song với DC cắt AD và BC lần lượt tại M và N.tìm độ dài MN
Cho hình thang ABCD . Đáy nhỏ AB là 30cm . Đáy lớn CD là 45cm . Hai đường chéo của hình thang cắt nhau tại O .
a, Tìm tỉ số \(\frac{OA}{OC}\)?
b, Từ O kẻ đường thẳng song song với DC cắt AD và BC lần lượt tại M và N . Tính độ dài MN
Cho hình thang ABCD , đáy bé bằng 30cm , đáy lớn bằng 45cm . hai đường chéo hình thang cắt nhau tại O
a) tìm tỉ số phần trăm trên OA,OC
b) từ O kẻ đoạn thẳng song song với DC và cắt AD và BE lần lượt là tại M,N . Tính MN
Cho hình thang ABCD (AB // CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh OM = ON
Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD
Xét tam giác ABC có: OM // AB (MN // AB)
=> \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)
Xét tam giác ABD có: ON // AB (MN // AB)
=> \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)
Xét hình thang ABCD có: MN // AB // CD (cmt)
=> \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)
Từ (1) (2) (3) => OM = ON
Trong ∆DAB có: \(\dfrac{MO}{AB}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (1)
Trong ∆CAB có: \(\dfrac{NO}{AB}=\dfrac{CO}{AC}\) ( hệ quả Ta lét) (2)
Trong ∆OAB có: \(\dfrac{CO}{CA}=\dfrac{DO}{DB}\) ( hệ quả Ta lét) (3)
từ (1), (2), (3) => \(\dfrac{MO}{AB}=\dfrac{NO}{AB}\) =>\(MO=NO\)
cho hình thang ABCD(AB song song với CD) có hai đường chéo AC và BD cắt nhau tại O. Qua O kẻ đường thẳng song song với hai đáy cắt AD và BC lần lượt tại P và Q. Biết AB=a; CD=b, cmr độ dài PQ là trung bình điều hòa của AB và CD
Cho hình thang ABCD (AB // CD), hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng d song song với AB cắt AD và BC lần lượt tại M và N. Chứng minh: a) OM = ON; b) 1/AB + 1/CD + 2/MN
tham khảo :
https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p
cho hình thang ABCD ca đáy bé AB=6cm, đáy lớn CD=9cm. O là giao điểm của 2 đường chéo. Đường thẳng qua o song song với AB cắt AD và BC lần lượt tại M và N. tính MN
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\dfrac{OA}{OC}=\dfrac{2}{3}\)
=>\(OC=1,5OA\)
\(\dfrac{OB}{OD}=\dfrac{2}{3}\)
=>\(OD=3\cdot\dfrac{OB}{2}=1,5OB\)
AO+OC=AC
=>1,5OA+OA=OC
=>OC=2,5OA
=>\(\dfrac{OC}{OA}=2,5=\dfrac{5}{2}\)
=>\(\dfrac{OA}{OC}=\dfrac{2}{5}\)
OB+OD=BD
=>BD=1,5OB+OB=2,5OB
=>\(\dfrac{OB}{BD}=\dfrac{2}{5}\)
Xét ΔADC có MO//DC
nên \(\dfrac{MO}{DC}=\dfrac{AO}{AC}\)
=>\(\dfrac{MO}{9}=\dfrac{2}{5}=0,4\)
=>MO=0,4*9=3,6(cm)
Xét ΔBDC có ON//DC
nên \(\dfrac{ON}{DC}=\dfrac{BO}{BD}\)
=>\(\dfrac{ON}{9}=\dfrac{2}{5}\)
=>ON=0,4*9=3,6(cm)
MN=MO+ON
=3,6+3,6
=7,2(cm)
Cho hình thang ABCD có đáy AB<CD và O là giao điểm hai đường chéo . Từ trung điểm M của AB kẻ đường thảng MO cắt CD tại N
a)CM: N là trung điểm của CD
b) Kóe dài CD và BC cắt nhau tại I . Cm: I,M,N,O thẳng hàng
c) Qua O kẻ đường thẳng d song song với AB và CD ,cắt AD và BC lần lượt tại B và F
CM: O là trung điểm của EF
cho hình thang abcd đáy lớn ab.đường thẳng kẻ từ c song song ad cắt đường chéo bd tại m,cắt ab tại f.Đường thẳng kẻ từ D song song với bc cắt đường chéo ac ở n và cắt ab tại e.các đường thẳng kẻ từ e và f lần lượt song song với ac và bd cắt ad và bc ở p và q a)CMR : PN//CD b)CMR : 4 điểm P,M,N,Q thẳng hàng
Cho hình thang ABCD( AB//CD; AB<CD) . Hai đường chéo cắt
nhau tại O.
a) CMR: OA.OD=OB.OC
b) Đường thẳng đi qua O mà song song với CD cắt AD và BC lần lượt
tại M và N. CMR: OM=ON.
c) AD cắt BC tại E. EO cắt AB và CD lần lượt tại P và Q. CMR: P là
trung điểm của AB; Q là trung điểm của CD;
mg giúp mình câu c với
a.Xét ∆OCD có AB // CD (gt)
⇒OAOC=OBOD⇒OAOC=OBOD (hệ quả của định lí Thales)
⇒OA.OD=OB.OC