Giải pt :
cos2x.sin4x + cos2x = 2cosx (sin x + cos x) -1
giải giúp mình với:
a,sin3x+sin2x=5sinx
b,√3 sin2x+cos2x=2cosx-1
c,cos4x+sin6x=cos2x
d,√2 sin(2x+π/4)=2sinx+1
e,sin23x-cos4x=sin25x-cos26x
đây là câu a
mk cảm thấy cứ hơi sai sai . bạn xem lại hộ mk nhé
\(4\sin^{2020}x+4\cos^{2020}x=8\left(sin^{2022}x+\cos^{2022}x\right)+5\cos2x\)
Giải pt
\(\Leftrightarrow4sin^{2020}x\left(1-2sin^2x\right)=4cos^{2020}x\left(2cos^2x-1\right)+5cos2x=0\)
\(\Leftrightarrow4sin^{2020}x.cos2x=4cos^{2020}x.cos2x+5cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=...\\4sin^{2020}x=4cos^{2020}x+5\left(1\right)\end{matrix}\right.\)
Xét (1), ta có \(\left\{{}\begin{matrix}4sin^{2020}x\le4\\4cos^{2020}x+5\ge5\end{matrix}\right.\)
\(\Rightarrow4sin^{2020}x< 4cos^{2020}x+5\) với mọi x
\(\Rightarrow\left(1\right)\) vô nghiệm
giải phương trình
1.\(sin^3x+2cosx-2+sin^2x=0\)
\(2.\frac{\sqrt{3}}{2}sin2x+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
3.\(2sin2x-cos2x=7sinx+2cosx-4\)
4.\(2cos2x-8cosx+7=\frac{1}{cosx}\)
5.\(cos^8x+sin^8x=2\left(cos^{10}x+sin^{10}x\right)+\frac{5}{4}cos2x\)
6.\(1+sinx+cos3x=cosx+sin2x+cos2x\)
7.\(1+sinx+cosx+sin2x+cos2x=0\)
1.
\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)
\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)
\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
2.
\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)
\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)
Xét (1):
Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm
3.
\(\Leftrightarrow4sinx.cosx-\left(1-2sin^2x\right)=7sinx+2cosx-4\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+2sin^2x-7sinx+3=0\)
\(\Leftrightarrow2cosx\left(2sinx-1\right)+\left(sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2cosx+sinx-3\right)\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\Leftrightarrow...\\2cosx+sinx=3\left(1\right)\end{matrix}\right.\)
Xét (1), do \(2^2+1^2< 3^2\) nên (1) vô nghiệm
Giải các PT sau:
1. \(\dfrac{\left(2\cos2x-1\right)\left(\sin x-3\right)}{\sin x}=0\)
2.\(\dfrac{3\left(\sin x+\cos x\right)}{\sin x-\cos x}=2+2\cos x\)
3.\(\dfrac{3\left(\sin x+\tan x\right)}{\tan x-\sin x}-2\cos x=2\)
4. \(1+\sin x+\cos x+\sin2x+\cos2x=0\)
5. \(2\sin x\left(1+\cos2x\right)+\sin2x=1+2\cos x\)
1.
ĐKXĐ: \(x\ne k\pi\)
\(\Leftrightarrow\left(2cos2x-1\right)\left(sinx-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\sinx=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}+k\pi\end{matrix}\right.\)
2. Bạn kiểm tra lại đề, pt này về cơ bản ko giải được.
3.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\dfrac{3\left(sinx+\dfrac{sinx}{cosx}\right)}{\dfrac{sinx}{cosx}-sinx}-2cosx=2\)
\(\Leftrightarrow\dfrac{3\left(1+cosx\right)}{1-cosx}+2\left(1+cosx\right)=0\)
\(\Leftrightarrow\left(1+cosx\right)\left(\dfrac{3}{1-cosx}+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=-1\left(loại\right)\\cosx=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
4.
\(\Leftrightarrow\left(sin^2x+cos^2x+2sinx.cosx\right)+\left(sinx+cosx\right)+\left(cos^2x-sin^2x\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)^2+\left(sinx+cosx\right)+\left(sinx+cosx\right)\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+cosx+1+cosx-sinx\right)=0\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\left(2cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=\dfrac{2\pi}{3}+k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)
giải pt:
\(\frac{sin^3x+\cos^3x}{2\cos x-\sin x}=\cos2x\)
1)Giải pt bậc hai đối với một hàm số lượng giác:
a. 2 cosxcos2x=1+cos2x+cos3x
b.5(1+cosx)=2+sin^4x-cos^4x
c.sin^4x +cos^4x=sin2x-1/2
2) giải phương trình chứa ẩn dưới mẫu:
Sin2x+2cosx-sinx-1/ tan x+√3=0
giải pt lượng giác:cos2x/cosx+(1+cos^2(x))tanx=1+sin^2(x)
giải pt : \(\frac{\left(2\sin x-1\right)\left(\cos2x+\sin x+1\right)}{\sqrt{3}\sin x-\sin2x}=\sqrt{3}+2\cos x\)
giải pt:
(1-2sin2x)(2cosx-sinx)= sin3x+cos3x
\(\Leftrightarrow2cosx-sinx-4sin^2x.cosx+2sin^3x=sin^3x+cos^3x\)
\(\Leftrightarrow sin^3x-cos^3x-4sin^2x.cosx+2cosx-sinx=0\)
- Với \(\left\{{}\begin{matrix}cosx=0\\sinx=1\end{matrix}\right.\) \(\Leftrightarrow x=\frac{\pi}{2}+k2\pi\) là nghiệm của pt
- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)
\(tan^3x-1-4tan^2x+2\left(1+tan^2x\right)-tanx\left(1+tan^2x\right)=0\)
\(\Leftrightarrow-2tan^2x-tanx+3=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\frac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=arctan\left(-\frac{3}{2}\right)+k\pi\end{matrix}\right.\)