giải phương trình \(\frac{\sin^3x-\cos^3x}{\sqrt{\sin x}+\sqrt{\cos x}}=2\cos2x\)
a/\(\sin3x+\cos2x=1+2\sin x\cos2x\)
b/\(\sin^3x+\cos^3x=2\left(\sin^5x+\cos^5x\right)\)
c/\(\dfrac{\tan x}{\sin x}-\dfrac{\sin x}{\cos x}=\dfrac{\sqrt{2}}{2}\)
d/\(\dfrac{\cos x\left(\cos x+2\sin x\right)+3\sin x\left(\sin x+\sqrt{2}\right)}{\sin2x-1}=1\)
e/\(\sin^2x+\sin^23x-2\cos^22x=0\)
f/\(\dfrac{\tan x-\sin x}{\sin^3x}=\dfrac{1}{\cos x}\)
g/\(\sin2x\left(\cos x+\tan2x\right)=4\cos^2x\)
h/\(\sin^2x+\sin^23x=\cos^2x+\cos^23x\)
k/\(4\sin2x=\dfrac{\cos^2x-\sin^2x}{\cos^6x+\sin^6x}\)
mọi người giải giúp em với em đang cần gấp ạ
Giải các phương trình sau:
1, \(\sin2x.\sin x+\cos2x=\cos2x.\cos x\)
2, \(\frac{\tan x+1}{1-\tan x}=\cot2x\)
3, \(\sin3x+\sin x-\sqrt{3}\cos x=0\)
4, \(\sin^3x-\cos^3x-\sin x.\cos x=1\)
5, \(8\sin x-\frac{1}{\sin x}=\frac{\sqrt{3}}{\cos x}\)
Mọi người giúp em với ạ!!! Em cần gấp!!!
1,Giải phương trình:
a,\(cos^3x+sin^3x=cos2x\)
b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)
c,\(2cos^3x=sin3x\)
d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)
e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)
1)giải pt a)√2 cos2x-1=0
b) sinx =cos3x
c) cos (x+π/3) +sin(3x+π/4)=0
d)tan 2x = cot (x+π/4)
e) sin x = √3 cos x
f) tan^2(π/3-2x)-3=0
giải pt : \(\frac{\left(2\sin x-1\right)\left(\cos2x+\sin x+1\right)}{\sqrt{3}\sin x-\sin2x}=\sqrt{3}+2\cos x\)
\(4\sin^{2020}x+4\cos^{2020}x=8\left(sin^{2022}x+\cos^{2022}x\right)+5\cos2x\)
Giải pt
Giải phương trình: \(\left(\sin x-2\cos x\right)\cos2x+\sin x=\left(\cos4x-1\right)\cos x+\frac{\cos2x}{2\sin x}\)