Tìm số dư khi chia :
\(2017^{2018}+161174\) cho \(\left(1+2017+2017^2+...+2017^{2017}\right)\)
Lưu ý: (A+M): A là số dư là M
Cho số A = \(2017^{2018}+2018^{2017}\). Tìm số dư khi chia A cho 10 ?
Ta có:
20172 = 9 ( theo mod 10 ) ; 20178=(20172)4=94=1 ( theo mod 10 )
201710 = (20172)5 = 95=9 ( theo mod 10 )
2017100=( 201710)10=910=1 ( theo mod 10 )
20171000=( 2017100)10=110=1 ( theo mod 10 )
20172000=( 20171000)2=12= 1( theo mod 10 )
20172018=20172000.201710.20178=1.9.1=9( theo mod 10 )
2018=8 ( theo mod 10 ) ;20182=4 ( theo mod 10 )
20187=87=2 ( theo mod 10 )
201810=(20182)5=45=4 ( theo mod 10 )
2018100=(201810)10=410=6 ( theo mod 10 )
20181000= (2018100)10=610=6 ( theo mod 10 )
20182000=(20181000)2=62=6( theo mod 10 )
20182017=20182000.201810.20187=6.4.2=8
⇒ A = 20172018+20182017=9+8=7 ( theo mod 10 )
⇒ Số dư khi chia A = 20172018+20182017 cho 10 là 7
Ta có:
20172 = 9 ( theo mod 10 ) ; 20178=(20172)4=94=1 ( theo mod 10 )
201710 = (20172)5 = 95=9 ( theo mod 10 )
2017100=( 201710)10=910=1 ( theo mod 10 )
20171000=( 2017100)10=110=1 ( theo mod 10 )
20172000=( 20171000)2=12= 1( theo mod 10 )
20172018=20172000.201710.20178=1.9.1=9( theo mod 10 )
2018=8 ( theo mod 10 ) ;20182=4 ( theo mod 10 )
20187=87=2 ( theo mod 10 )
201810=(20182)5=45=4 ( theo mod 10 )
2018100=(201810)10=410=6 ( theo mod 10 )
20181000= (2018100)10=610=6 ( theo mod 10 )
20182000=(20181000)2=62=6( theo mod 10 )
20182017=20182000.201810.20187=6.4.2=8
⇒ A = 20172018+20182017=9+8=7 ( theo mod 10 )
⇒ Số dư khi chia A = 20172018+20182017 cho 10 là 7
Cho A = 20172018+20182017 Tìm số dư khi chia A cho 10
Cho A= 1+2018+2018^2+2018^3+.......+2018^2017.Tìm số dư khi chia A cho 2019.
A=(1+2018)+2018^2(1+2018)+...+2018^2016(1+2018)
=2019(1+2018^2+...+2018^2016) chia hết cho 2019
=>A chia 2019 dư 0
Cho \(A=1-\frac{2017}{2019}+\left(\frac{2017}{2019}\right)^2-\left(\frac{2017}{2019}\right)^3+...+\left(\frac{2017}{2019}\right)^{2018}\)
Chứng minh A không là số nguyên.
1)Tìm số tự nhiên x ,biết:
6+3x+2=87
2)Tìm số tự nhiên x, biết 33 chia x dư 3 và 101 chia x dư 11
3)Cho biểu thức A=2017+20172+20173+...+20172018
chứng minh rằng A chia hết cho 2018
(trả lời nhanh nhất nhé mn)
1/6+3x+2=87
3x+2=87-6
3x+2=81
3x+2=34
x+2=4
x =4-2
x =2
2/
(33-3)chia hết cho x =>30 chia hết cho x
(101-11)chia hết cho x 90 chia hết cho x
x thuộc ƯC(30,90)
30=2.3.5
90=2.3.3.5
ƯCLN(30,90)=2.3.5=30
x thuộc ƯC(30,90)=Ư(30)=1 ,2,3,5,6,10,15,30
Sau khi loại các số không hợp điều kiện ta được các số:15,30
Vậy x = 15,30
3/A=2017+20172+20173+.........+20172018
A=(2017+20172)+(20173+20174)+.......(20172017+20172018)
A=2017.(1+2017)+20173.(1+2017)+..........20172017.(1+2017)
A=2017.2018+20173.2018+..................20172017.2018
=>A chia hết cho 2018
ngu the con bay dat hoi voi chang hang qua ngu qua ngu
hãy cho biết 2017 mũ 2018 :
a ) có tận cùng là chữ số mấy
b ) khi 2017 mũ 2018 chia cho 5 dư mấy
a)2017^2018 có tận cùng là 9
b)Khi 2017^2018 chia cho 5 thì dư 4
Tìm số dư của S khi chia S cho 9
S=20172017...2017 ( trong đó có tất cả là 2017 số 2017 )
giúp m với mai m đi học rồi
(Ý kiến riêng)
Vì có 2017 số 2017 nên S có: 2017 chữ số 2, 2017 chữ số 0, 2017 chữ số 1, 2017 chữ số 7.
Tổng các chữ số của S là: 2.2017+0.2017+1.2017+7.2017 =20170
Ta có: 20170 : 9 = 2241 (dư 1)
Vậy S:9 dư 1
Cho các số thực dương a,b,c,m,n,p thỏa mãn \(2.\sqrt[2017]{m}+2.\sqrt[2017]{n}+3.\sqrt[2017]{p}\le7\) và \(4a+4b+3c\ge42\). Đặt \(S=\dfrac{2\left(2a\right)^{2018}}{m}+\dfrac{2\left(2b\right)^{2018}}{n}+\dfrac{3c^{2018}}{p}\). KĐ đúng
A. 42<S<\(7.6^{2018}\) B.\(S>6^{2018}\) C. \(7\le S\le7.6^{2018}\) D.\(4\le S\le42\)
Áp dụng BĐT Cosi cho 2018 số:
\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)
\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)
\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)
Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)
\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)
\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)
\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)
Vậy \(S>6^{2018}\)
a) Tìm số tự nhiên nhỏ nhấ,biết rằng khi chia số đó cho 29 ta có số dư là 5 và khi chia cho 31 có số dư là 28.
b) Ba số a,b,c thỏa mãn các điều kiện a+b+c=1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\).Chứng minh rằng:\(a^{2017}+b^{2017}+c^{2017}=1\)
Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23
Hiệu của 31 va 29:31-29=2
Thương của phép chia cho 31 là:
(29-23):2=3
Số cần tìm là:
31*3+28=121
DS :121
b)1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)