Chung minh dang thuc (a + b)^2 = (- a - b)^2 Mn giup e
Giup minh voi
Chung minh cac dang thuc sau :
a) ( a - b )^3 = -( b - a )^3
b) ( -a - b )^2 = ( a + b )^2
Cho a, b, c,d la cac so thuc . Chung minh bat dang thuc sau:
a2 + b2 +c2 +d2 +e2 >= ab +ac + ad +ae
Lam giup minh nhe cac ban minh can gap lam
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\left(1\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2-a\left(b-c-d-e\right)\ge0\)
\(\Leftrightarrow\left(b^2-ab+\frac{1}{4}a^2\right)+\left(c^2-ac+\frac{1}{4}a^2\right)+\left(d^2-ad+\frac{1}{4}a^2\right)+\left(e^2-ae+\frac{1}{4}a^2\right)\ge0\)
\(\Leftrightarrow\left(b+\frac{1}{2}a\right)^2+\left(c+\frac{1}{2}a\right)^2+\left(d+\frac{1}{2}a\right)^2+\left(e+\frac{1}{2}a\right)^2\ge0\left(2\right)\)
( 2 ) đúng => ( 1 ) đúng
voi a,b,c,d, la cac so duong thoa man a*b = c*d =1 chung minh bat dang thuc : ( a+b )*( c+d ) +4 >= 2*( a+b+c+d ) cac ban oi giup minh voi OK
chung minh dang thuc
a.( b - c ) - a ( b + d ) = -a ( c + d )
giup minh voi lam onnnnn.......
a.(b-c)-a.(b+d)=-a.(c+d)
a.b-a.c-a.b+a.d=-a.(c+d)
(a.b-a.b)-(a.c+a.d)=-a.(c+d)
0-a.(c+d)=-a.(c+d)
-a.(c+d)=-a.(c+d)
Vậy a.(b-c)-a.(b+d)=-a.(c+d).
a. tim mot cach chung minh khac cua bat dang thuc tam giac
b. cho tam giac MNP. goi I la trung diem cua doan thang MN. chung minh rang: PM + PN > 2 PI
https://olm.vn/hoi-dap/question/41860.html
bn vào đây tham khảo nha
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)
\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)
Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)
b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)
\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)
Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)
c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)
\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)
Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)
chung minh dang thuc (a+b)2+(a-b)2=2(a2+b2)
Có VT = a2 + 2ab + b2 + a2 - 2ab + b2
= 2a2 + 2b2 = 2(a2 + b2) (= VP)
Vậy (a + b)2 + (a - b)2 = 2(a2 + b2)
Giup mink cau nay nha
1,chung minh dang thuc
-(-a+b+c)+(b-c-1)=(b-c+6)-(7-a+b)+c
2,Tim x thuoc Z
(x+1)+(x+3)+(x+5)+.....+(x+99)=0
(x-3)+(x-2)+(x-1)+...+10+11=0
\(-\left(-a+b+c\right)+\left(b-c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b-c-1=b-c+6-7+a-b+c\)
\(a-2c-1=a-1\)
\(-2c\ne0\)hay đẳng thức ko xảy ra
Chung minh dang thuc sau:
a3-b3+ab(a-b)=(a-b)(a+b)2
Trieu Trong Thai
CM a3+b3+c2 >= ab+bc+ac (*)
2a^2 +2b^2 +2c^2 - 2ab -2bc -2ac = (a-b)^2 + (b-c)^2 + (a-c)^2 >= 0
từ * => a^2 +b^2+c^2 +2ab+2bc+2ac >= 3ab+3bc+3ac <=> (a+b+c)^2 >= 3ab +3ac+3bc
từ * => 2ab +2ac+2bc+ a^2+b^2+c^2 =< 3a^2+3b^2+3c^2 <=> (a+b+c)^2 =< ...
de bai sai sua lai la
\(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
bien doi ve phai ta co:
\(\left(a-b\right)\left(a+b\right)^2\)
\(=a^3+ab^2-a^2b-b^3\)
\(=a^3-b^3+ab\left(b-a\right)\)= ve trai
vay \(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)