Tìm min: \(Q=\sqrt{2x^2+2x+1}+\sqrt{2x^2-8x+10}\)
Tìm min: \(Q=\sqrt{2x^2+2x+1}+\sqrt{2x^2-8x+10}\)
Cần cực kì gấp ai nhanh cho 5 tik
Giải phương trình vô tỉ:
a) \(4x^2-4x-10=\sqrt{8x^2-6x-10}\)
b) \(\sqrt{\left(x+1\right)\left(2-x\right)}=1+2x-2x^2\)
c) \(\sqrt{3x+8+6\sqrt{3x-1}}+\sqrt{3x+8-6\sqrt{3x-1}}=3x+4\)
d) \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
câu a nè bạn: http://123link.pw/O59k8hdZ
a,Ta có:\(4x^2-4x-10=\sqrt{8x^2-6x-5}\)
\(\Leftrightarrow16x^4+16x^2+100-80x^2-32x^3+80x=8x^2-6x-5\)
\(\Leftrightarrow16x^4-32x^3-64x^2+80x+100-8x^2+6x+5=0\)
\(\Leftrightarrow16x^4-32x^3-72x^2+86x+110=0\)
\(\Leftrightarrow2\left(x+1\right)\left(2x-5\right)\left(4x^2-2x-11\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\\4x^2-2x-11=0\Rightarrow\left[{}\begin{matrix}\dfrac{1+3\sqrt{5}}{4}\\\dfrac{1-3\sqrt{5}}{4}\end{matrix}\right.\end{matrix}\right.\)
Vậy ....
Bài 1: Tìm x để biểu thức có nghĩa
a)\(\sqrt{\dfrac{2x-8}{x^2+1}}\) b) \(\sqrt{\dfrac{-x^2-3}{8x+10}}\)
c)\(\dfrac{1}{\sqrt{x^2-2x+1}}\)
a) để biểu thức có nghĩa thì \(\dfrac{2x-8}{x^2+1}\ge0\) mà \(x^2+1>0\)
\(\Rightarrow2x-8\ge0\Rightarrow x\ge4\)
b) để biểu thức có nghĩa thì \(\dfrac{-x^2-3}{8x+10}\ge0\) mà \(-x^2-3=-\left(x^2+3\right)< 0\)
\(\Rightarrow8x+10< 0\Rightarrow x< -\dfrac{5}{4}\)
c) để biểu thức có nghĩa thì \(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)
a) ĐKXĐ: \(x\ge4\)
b) ĐKXĐ: \(x< -\dfrac{5}{4}\)
c) ĐKXĐ: \(x\ne1\)
Tìm ĐKXĐ : a) \(3-\sqrt{1-16x^2}\)
b)\(\frac{1}{1-\sqrt{x^2-3}}\)
c) \(\sqrt{8x-x^2-15}\)
d) \(\frac{2}{\sqrt{x^2-x+1}}\)
e) \(\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
g)\(\frac{\sqrt{10-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+14}\)
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
giải phương trình
a) \(\sqrt{2x-2\sqrt{2x-1}}-2\sqrt{2x+3-4\sqrt{2x-1}}+3\sqrt{2x+8-\sqrt{2x-1}}=4\)
b) \(4x^2+3x+3=4x\sqrt{x+3}+2\sqrt{2x-1}\)
c) \(\sqrt{x-4}+\sqrt{6-x}=x^2-11x+27\)
d) \(\sqrt{13x^2-6x+10}+\sqrt{5x^2-13x+\frac{17}{2}}+\sqrt{17x^2-48x+36}=\frac{1}{2}\left(36x-8x^2-21\right)\)
e) \(\sqrt{\frac{6}{3-x}}+\sqrt{\frac{8}{2-x}}=6\)
giác cácphương trình vô tỉ sau
\(\sqrt{x\left(x+2\right)}+\sqrt{2x-1}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)
\(2x+\sqrt{4-2x^2}+\sqrt{6-y}+\sqrt{22-y}=10\)
\(8x^2+\sqrt{\frac{1}{x}}=\frac{5}{2}\)
tìm min:
\(Q=x-2\sqrt{2x-1}\)
Cách 1:
Áp dụng bất đẳng thức \(AM-GM\) ta có:
\(Q=x-2\sqrt{2x-1}=x-\sqrt{4\left(2x-1\right)}\ge x-\dfrac{4+2x-1}{2}=-\dfrac{3}{2}\)
Vậy \(Q_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\)
Cách 2:
\(Q=x-2\sqrt{2x-1}\\ \Leftrightarrow2Q=2x-4\sqrt{2x-1}\\ \Leftrightarrow2Q=\left(2x-1\right)-4\sqrt{2x-1}+1\\ \Leftrightarrow2Q=\sqrt{\left(2x-1\right)^2}-4\sqrt{2x-1}+4-3\\ \Leftrightarrow2Q=\left(\sqrt{2x-1}-2\right)^2-3\\ mà:\left(\sqrt{2x-1}-2\right)^2\ge0\forall x\ge\dfrac{1}{2}\\ \Rightarrow\left(\sqrt{2x-1}-2\right)^2-3\ge-3\forall x\ge\dfrac{1}{2}\\ \Rightarrow2Q_{min}=-3\\ \Leftrightarrow Q_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\\ VậyQ_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\)
P=\(\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2x-2}{\sqrt{x}-1}\)
a) Rút gọn
b) Tìm min P
c) Tìm x để Q=\(\frac{2\sqrt{x}}{P}\in Z\)
Giải phương trình :
\(\sqrt{\frac{8x^3-1}{2x+3}}+\sqrt{2x+3}=\sqrt{4x^2+2x+1}+\sqrt{2x-1}\)