Cách 1:
Áp dụng bất đẳng thức \(AM-GM\) ta có:
\(Q=x-2\sqrt{2x-1}=x-\sqrt{4\left(2x-1\right)}\ge x-\dfrac{4+2x-1}{2}=-\dfrac{3}{2}\)
Vậy \(Q_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\)
Cách 2:
\(Q=x-2\sqrt{2x-1}\\ \Leftrightarrow2Q=2x-4\sqrt{2x-1}\\ \Leftrightarrow2Q=\left(2x-1\right)-4\sqrt{2x-1}+1\\ \Leftrightarrow2Q=\sqrt{\left(2x-1\right)^2}-4\sqrt{2x-1}+4-3\\ \Leftrightarrow2Q=\left(\sqrt{2x-1}-2\right)^2-3\\ mà:\left(\sqrt{2x-1}-2\right)^2\ge0\forall x\ge\dfrac{1}{2}\\ \Rightarrow\left(\sqrt{2x-1}-2\right)^2-3\ge-3\forall x\ge\dfrac{1}{2}\\ \Rightarrow2Q_{min}=-3\\ \Leftrightarrow Q_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\\ VậyQ_{min}=-\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\)