Tìm các chữ số a,b,c biết :
\(2\(\overline{abc}\) : 17 = \(\overline{abc}\)\)
\(Tìm các chữ số a,b,c biết : 2\(\overline{abc}\) : 17 = \(\overline{abc}\)\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
Tìm các chữ số a, b, c đôi một khác nhau thỏa mãn
\(\overline{acb}+\overline{cab}=2\overline{abc}\) và b>c
Biến đổi đến 6c -5a = b tách b trừ c bằng 5 lần c trừ a suy ra b trừ c chia hết cho 5,
b >6,a <c lần lượt thay b bằng 7, 8, 9 tìm được c bằng 2, 3, 4 và a băng 1,2,3
1.Tìm số có 3 chữ số \(\overline{abc}\)biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\) biết \(\overline{abc}\) chia hết cho 9 và a=3+c+1
1.Tìm số có 3 chữ số abc biết :
357-(a+b+c)=\(\overline{abc}\)
2.Tìm số có 3 chữ số \(\overline{abc}\)biết \(\overline{abc}\)chia hết cho 9 và a=3+c+1
ồ cuk khó nhỉ
Nếu các bn thích thì ...........
cứ cho NTN này nhé !
Tìm các chữ số a : b ; c ; d biết :
\(a.\overline{abc}.\overline{bcd}=\overline{abcabc}\)
abcabc = abc . 1000 + abc
\(\Leftrightarrow\)abcabc = abc . (1000 + 1)
Suy ra : a. bcd . abc = abcabc
\(\Leftrightarrow\)a. bcd . abc = abc . 1001
\(\Leftrightarrow\)a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143
Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3
a . abc . bcd = abcabc
a . abc . bcd = abc . 1001
=> a . bcd = 1001
7 . 143 = 1001
=> a = 7 ; b = 1 ; c 4 ; d = 3
a . abc . bcd =abcabc
=> ta có :
=> a .abc.bcd=abc
=> a . bcd = 1001
=> 7 . 143 = 1001
=> a = 7 ; b=1 ; d=4 ; c=3
1/ Cho \(S=\overline{abc}+\overline{bca}+\overline{cab}\)
Chứng minh rằng: S không phải là số chính phương
2/ Tìm các số có ba chữ số sao cho hiệu của số ấy và số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
3/ Tìm 3 số tự nhiên a, b, c (a > b > c > 0), biết rằng: \(\overline{abc}+\overline{bca}+\overline{cab}=666\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
tìm các số \(\overline{abc}\)biết rằng ( \(\overline{abc}\)+\(\overline{cba}\))\(⋮\)68 (các chữ số a,b,c có thể giống nhau)
tìm các chữ số a , b , c , d biết a . \(\overline{bcd}\) . \(\overline{abc}\) = \(\overline{abcabc}\)
ta có thể tách abcabc = abc . 1000 + abc (bạn thử đi đúng đấy!!!) ( nhớ abcabc phải có gạch trên đầu nha)
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
tích thử lại là 7 . 143 . 714 = 714714 ( chính xác )
Chúc học tốt môn toán!!!!!!!!!!!!!!!!