phân tích các đa thức sau thành nhân tử
\(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
Phân tích các đa thức sau thành nhân tử :
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
a) \(\left(a^2+b^2-5\right)^2-2\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(\sqrt{2}.ab+\sqrt{2}.2\right)^2\)
\(=\left(a^2+b^2-5-\sqrt{2}.ab-\sqrt{2}.2\right).\left(a^2+b^2-5+\sqrt{2}.ab+\sqrt{2}.2\right)\)
b) \(\left(4a^2-3a-18\right)^2-\left(4a^2+3a\right)^2\)
\(\left(4a^2-3a-18-4a^2-3a\right).\left(4a^2-3a-18+4a^2+3a\right)\)
\(=\left(-6a-18\right).\left(8a^2-18\right)\)
\(=\left(-6\right).\left(a+3\right).2.\left(4a^2-9\right)\)
\(=\left(-12\right).\left(a+3\right).\left(2a-3\right).\left(2a+3\right)\)
a) Xem lại đề
b) ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= [ ( 4a2 - 3a - 18 ) - ( 4a2 + 3a ) ][ ( 4a2 - 3a - 18 ) + ( 4a2 + 3a ) ]
= ( 4a2 - 3a - 18 - 4a2 - 3a )( 4a2 - 3a - 18 + 4a2 + 3a )
= ( -6a - 18 )( 8a2 - 18 )
= -6( a + 3 ).2( 4a2 - 9 )
= -12( a + 3 )( 4a2 - 9 )
= -12( a + 3 )( 2a - 3 )( 2a + 3 )
a. ( a2 + b2 - 5 )2 - 2 ( ab + 2 )2
= ( a2 + b2 - 5 )2 - [\(\sqrt{2}\)( ab + 2 ) ]2
= [ a2 + b2 - 5 -\(\sqrt{2}\)( ab + 2 ) ] [ a2 + b2 - 5 +\(\sqrt{2}\)( ab + 2 ) ]
= ( a2 + b2 - 5 -\(\sqrt{2}\)ab - 2\(\sqrt{2}\)) ( a2 + b2 - 5 +\(\sqrt{2}\)ab + 2\(\sqrt{2}\) )
b. ( 4a2 - 3a - 18 )2 - ( 4a2 + 3a )2
= ( 4a2 - 3a - 18 - 4a2 - 3a ) ( 4a2 - 3a - 18 + 4a2 + 3a )
= ( - 6a - 18 ) ( 8a2 - 18 )
= - 6 ( a + 3 ) . 2 [ ( 2a )2 - 32 ]
= - 12 ( 2a - 3 ) ( 2a + 3 )
phân tích đa thức thành nhân tử
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4.\)
\(=\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4.\)
\(=\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4.\)
\(=\left(x+5ax+4a^2+a^2\right)^2.\)
\(=\left(x+5ax+5a^2\right)^2.\)
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(=\)\(\left(x+a\right)\left(x+4a\right)\left(x+2a\right)\left(x+3a\right)+a^4\)
\(=\)\(\left(x^2+5ax+4a^2\right)\left(x^2+5ax+6a^2\right)+a^4\)
\(=\)\(\left[\left(x^2+5ax+5a^2\right)-a^2\right].\left[\left(x^2+5ax+5a^2\right)-a^2\right]+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2-a^4+a^4\)
\(=\)\(\left(x^2+5ax+5a^2\right)^2\)
Chúc bạn học tốt ~
phân tích đa thguwcs thành nhân tử:
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
(x + a)(x + 2a)(x + 3a)(x + 4a) + a4
= (x + a)(x + 4a)(x + 2a)(x + 3a) + a4
= (x2 + 4ax + ax + 4a2)(x2 + 3ax + 2ax + 6a2) + a4
= (x2 + 5ax + 4a2)(x2 + 5ax + 6a2) + a4
Đặt x2 + 5ax + 4a2 = t
= t(t + 2a2) + a4
= (t + a2)2
= (x2 + 5ax + 4a2 + a2)2
= (x2 + 5ax + 5a2)2
Cách đặt khác ez hơn :))
\(A=\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
\(A=\left[\left(x+a\right)\left(x+4a\right)\right]\left[\left(x+2a\right)\left(x+3a\right)\right]+a^4\)
\(A=\left(4a^2+5ax+x^2\right)\left(6a^2+5ax+x^2\right)+a^4\)
Đặt \(p=5a^2+5ax+x^2\)
\(\Rightarrow A=\left(p-a^2\right)\left(p+a^2\right)+a^4\)
\(\Rightarrow A=p^2-a^4+a^4\)
\(\Rightarrow A=p^2\)
Thay \(p=5a^2+5ax+x^2\)vào A ta có :
\(A=\left(5a^2+5ax+x^2\right)^2\)
Phân tích đa thức sau thành nhân tử:
\(4a^2b^2-\left(a^2+b^2-1\right)^2\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2\)
\(=\left[2ab-\left(a^2+b^2-1\right)\right].\left[2ab+\left(a^2+b^2-1\right)\right]\)
\(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2+-1\right)\)
\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b+1\right)\left(a+b-1\right)\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2=\left(2ab+a^2+b^2-1\right)\left(2ab-a^2-b^2+1\right)\)
\(=\left[\left(a+b\right)^2-1\right]\left[1-\left(a-b\right)^2\right]\)
\(=\left(a+b-1\right)\left(a+b+1\right)\left(1+a-b\right)\left(1-a+b\right)\)
Phân tích các đa thức sau thành nhân tử:
a) \(4{a^2} + 4a + 1\)
b) \( - 3{x^2} + 6xy - 3{y^2}\)
c) \({\left( {x + y} \right)^2} - 2\left( {x + y} \right)z + {z^2}\)
`a, 4a^2 + 4a + 1 = (2a+1)^2`
`b, -3x^2 + 6xy - 3y^2`
` = -3(x-y)^2`
`c, (x+y)^2 - 2(x+y)z + z^2`
`= (x+y-z)^2`
Phân tích đa thức thành nhân tử
\(x^3-\left(a+5\right)x^2-2\left(a-3\right)\left(a-1\right)x+4a^2-24a+36\)
=\(\left(x+a-3\right)\left(x^2-2ax-2x+4a-12\right)\)
Phân tích đa thức thành nhân tử: \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
4a2b2-(a2+b2-c2)2
= (4ab-a2-b2+c2)(4ab+a2+b2-c2)
= -[(a-b)2-c2][(a+b)2-c2]
=-(a-b+c)(a-b-c)(a+b-c)(a+b+c)
=(b-a-c)(b+c-a)(a+b-c)(a+b+c)
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)
\(=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)
Phân tích đa thức thành nhân tử
a_\(x\left(y-x\right)^3-y\left(x-y\right)^2+xy\left(x-y\right)\)
b) \(3a^2x-3a^2y+abx-aby\)
a) x(y - x)3 + y(x - y)2 + xy(x - y)
= x(y - x).(y - x)2 + y(x - y)2 + xy(x - y)
= x(y - x)(x - y)2 + y(x - y)2 + xy(x - y)
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
= (x - y)[x(y - x)(x - y) + y(x - y) + xy]
b) 3a2x - 3a2y + abx - aby
= 3a2(x - y) + ab(x - y)
= a(x - y)(3a + b)
a) x( y - x )3 - y( x - y )2 + xy( x - y )
= -x( x - y )3 - y( x - y )2 + xy( x - y )
= ( x - y )[ -x( x - y )2 - y( x - y ) + xy ]
= ( x - y )[ -x( x2 - 2xy + y2 ) - yx + y2 + xy ]
= ( x - y )( -x3 + 2x2y - xy2 - yx + y2 + xy )
= ( x - y )( -x3 + 2x2y - xy2 + y2 )
b) 3a2x - 3a2y + abx - aby
= 3a2( x - y ) + ab( x - y )
= ( x - y )( 3a2 + ab )
= ( x - y )a( 3a + b )
a) x (y - x) 3 - y (x - y) 2 + xy (x - y)
= -x (x - y) 3 - y (x - y) 2 + xy (x - y)
= (x - y) [-x (x - y) 2 - y (x - y) + xy]
= (x - y) [-x (x 2 - 2xy + y 2 ) - yx + y 2 + xy]
= (x - y) (-x 3 + 2x 2 y - xy 2 - yx + y 2 + xy)
= (x - y) (-x 3 + 2x 2 y - xy 2 + y 2 )
b) 3a 2 x - 3a 2 y + abx - aby
= 3a 2 (x - y) + ab (x - y)
= (x - y) (3a 2 + ab)
= (x - y) a (3a + b)học tốt
phaan tíchđa thức thành nhân tử:
\(\left(x+a\right)\left(x+2a\right)\left(x+3a\right)\left(x+4a\right)+a^4\)
Ta có:
(x+a)(x+2a)(x+3a)(x+4a) + a4
=(x+a)(x+4a)(x+3a)(x+2a) +a4
=(x2+5ax+4a2)(x2+5ax+6a2) + a4
Đặt x2+5ax+5a2=y
=>(x2+5ax+4a2)(x2+5ax+6a2) + a4=(y-a2)(y+a2)+a4
=y2-a4+a4
=y2
=(x2+5ax+5a2)2
k mik nha