Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Tôi Nghèo Kệ Đời Tôi
Xem chi tiết
Hiền Thương
28 tháng 7 2021 lúc 20:48

B = | x-1| + |x-2| + |x-3| + |x-5|

Ta có : 

B = |x-1| + |x-2| + |3-x| + |5-x| 

B = (|x-1|+|5-x|) + (|x-2| + |3-x| ) \(\ge\) |x-1+5-x| + | x-2+3-x | = |4| + |1| = 5 

Dấu ''='' xảy ra <=> \(\hept{\begin{cases}\left(x-1\right)\left(5-x\right)\ge0\\\left(x-2\right)\left(3-x\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}1\le x\le5\\2\le x\le3\end{cases}}\Leftrightarrow2\le x\le3\) 

Vậy MinB = 5 <=>\(2\le x\le3\)

Khách vãng lai đã xóa
Nguyễn Huy Hải
Xem chi tiết
Trần Thảo Vi
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Cậu bé thông minh
Xem chi tiết
Võ Đông Anh Tuấn
23 tháng 9 2016 lúc 9:41

Ta có : \(\left|x+3\right|\ge x+3\)

             \(\left|x-2\right|\ge2-x\)

             \(\left|x-5\right|\ge0\)

\(\Rightarrow B=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\ge x+3+2-x=5\)

\(Min_B=5\Leftrightarrow\begin{cases}x+3\ge0\rightarrow x\ge-3\\x-2\le0\rightarrow x\le2\end{cases}.\)

Nguyễn Tuấn Kiệt
Xem chi tiết
Xyz OLM
12 tháng 11 2019 lúc 21:27

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

Khách vãng lai đã xóa
Harry Huan
Xem chi tiết
Isolde Moria
8 tháng 11 2016 lúc 19:12

a)

Ta có : \(A=\left|x-2\right|+\left|x-5\right|=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=3\)

\(\Rightarrow A\ge3\)

Dấu " = " xảy ra khi \(\begin{cases}x-2\ge0\\5-x\ge0\end{cases}\)\(\Leftrightarrow2\le x\le5\)

Vậy MINA=3 khi \(2\le x\le5\)

b)

Ta có :

\(\begin{cases}\left|x-1\right|+\left|x-2016\right|\ge\left|x-1+2016-x\right|=2015\\\left|x-2\right|+\left|x-2015\right|\ge\left|x-2+2015-x\right|=2013\\...\\\left|x-1008\right|+\left|x-1009\right|\ge\left|x-1008+1009-x\right|=1\end{cases}\)

\(\Rightarrow B\ge1+3+....+2015\)=1016064

Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1\ge0\\2016-x\ge0\end{cases}\\....\\\begin{cases}x-1008\ge0\\1009-x\ge0\end{cases}\end{cases}\)\(\Rightarrow1008\le x\le1009\)

Vậy ...........

soyeon_Tiểubàng giải
8 tháng 11 2016 lúc 19:23

A = |x - 2| + |x - 5|

A = |x - 2| + |5 - x|

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\) \(\forall x;y\)ta có:

\(A=\left|x-2\right|+\left|5-x\right|\ge\left(x-2\right)+\left(5-x\right)=3\)

Dấu "=" xảy ra khi \(\begin{cases}x-2\ge0\\x-5\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2\\x\le5\end{cases}\)\(\Rightarrow2\le x\le5\)

Vậy GTNN của A là 3 khi \(2\le x\le5\)

B = |x - 1| + |x - 2| + |x - 3| + ... + |x - 2016|

B = |x - 1| + |x - 2| + ... + |x - 1008| + |x - 1009| + |x - 1010| + ... + |x - 2016|

B = |x - 1| + |x - 2| + ... + |x - 1008| + |1009 - x| + |1010 - x| + ... + |2016 - x|

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)\(\forall x;y\) ta có:

\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-1008\right|+\left|1009-x\right|+\left|1010-x\right|+...+\left|2016-x\right|\)

\(\ge\left(x-1\right)+\left(x-2\right)+...+\left(x-1008\right)+\left(1009-x\right)+\left(1010-x\right)+...+\left(2016-x\right)\)

\(B\ge1008^2=1016064\)

Dấu "=" xảy ra khi \(\begin{cases}x-1\ge0\\1009-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge1\\x\le1009\end{cases}\)\(\Rightarrow1\le x\le1009\)

Vây GTNN của B là 1016064 khi \(1\le x\le1009\)

Jimmy Neutron
25 tháng 2 2017 lúc 15:23

A=3

B=2015