Chứng minh rằng :
\(7^{100}+11^{100}\) chia hết cho 13
Chứng minh rằng: 7^100 + 11^100 chia hết cho 13
Chứng minh rằng \(7^{100}+11^{100}\) chia hết cho 13
Chứng minh rằng số \(7^{100}+11^{100}\) chia hết cho 13
1. a,b,c thuộc N
Chứng minh rằng : 11a + 22b + 33c chia hết cho 11
2. Chứng minh rằng :2+ 22 + 23+.....+2100chia hết cho 3
3.Chứng minh rằng: Số abcabc chia hết cho 7, 11, 13
Xin các bạn giải giúp mình. Cảm ơn
1) Ta có : 11a + 22b + 33c
= 11a + 11.2b + 11.3c
= 11.(a + 2b + 3c) \(⋮\)11
=> 11a + 22b + 33c \(⋮\)11
2) 2 + 22 + 23 + ... + 2100
= (2 + 22) + (23 + 24) + ... + (299 + 2100)
= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)
= 6 + 22.6 + ... + 298.6
= 6.(1 + 22 + .. + 298)
= 2.3.(1 + 22 + ... + 298) \(⋮\)3
=> 2 + 22 + 23 + ... + 2100 \(⋮\)3
3) Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x (1000 + 1)
= abc x 1001
= abc .7. 13.11 (1)
= abc . 7 . 13 . 11 \(⋮\)7
=> abcabc \(⋮\)7
=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11
=> abcabc \(⋮\)11
=> Từ (1) ta có : abcabc = abc . 7.11.13 \(⋮\) 13
=> => abcabc \(⋮\)13
1
.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\)
\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\)
hc tốt
Chứng minh rằng
a) 36^36 - 9^10 chia hết cho 45
b) 7^n+4 - 7^n chia hết cho 100
c) 7^1000 - 3^1000 chia hết cho 10
d) 20^15 -1 chia hết cho 11
e) 2^30 + 3^30 chia hết cho 13
f) 555^222 + 222^555 chia hết cho 7
Chứng minh rằng :
a)5^100-5^99+5^98 chia hết cho 7
b)7^29+7^28-7^27 chia hết cho 11
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
a. 5100 - 599 + 598
= 598.(52 - 5 + 1)
= 598.(25 - 5 + 1)
= 598.21
= 598.3.7 chia hết cho 7
Vậy 5100 - 599 + 598 chia hết cho 7 (Đpcm).
b. 729 + 728 - 727
= 727.(72 + 7 - 1)
= 727.(49 + 7 - 1)
= 727.55
= 727.5.11 chia hết cho 11
Vậy 729 + 728 - 727 chia hết cho 11 (Đpcm).
chứng minh rằng
a) 7^n+4 - 7^n chia hết cho 100
b) 20^15 -1 chia hết cho 11
c) 555^222 + 222^555 chia hết cho 7
a) \(7^{n+4}-7^n\)
\(=7^n\left(7^4-1\right)\)
\(=7^n.2400⋮100\)
b) \(20^5\equiv1\left(mod11\right)\)
\(\Rightarrow20^{15}\equiv1\left(mod11\right)\)
\(\Rightarrow20^5-1\equiv0\left(mod11\right)\)
\(\Rightarrow20^5-1⋮11\)
Chứng minh rằng: 11^100-1 chia hết cho 100
Ta có : \(11^{10}⋮1\left(mod100\right)\)
\(\Rightarrow\left(11^{10}\right)^{10}⋮1\left(mod100\right)\)
\(\Rightarrow11^{100}⋮1\left(mod100\right)\)
\(1⋮1\left(mod100\right)\)
\(\Rightarrow11^{100}-1⋮0\left(mod100\right)\)
Hay \(11^{100}-1⋮100\)( dpcm )
a. chứng minh rằng 11...11(100 so); 22...22(100 so) la tích của 2 stn lien tiep
b. chứng minh rằng số 111..11(81 số) chia hết cho 11