Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
12 tháng 5 2017 lúc 11:00

a) Giả sử véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) .
Dựng hình bình hành OABD.
O A B D
Theo quy tắc hình bình hành: \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{OD}\).
Theo giả thiết thì OD là tia phân giác góc \(\widehat{AOB}\).
Vì vậy hình bình hành OABD là hình thoi.
Suy ra OA = OB.
- Giả sử OA = OB.
Khi đó hình bình hành OABD có OA = OB nên tứ giác OABD là hình thoi.
Kết luận: Điều kiện cần và đủ để véc tơ \(\overrightarrow{OA}+\overrightarrow{OB}\) nằm trên đường phân giác góc \(\widehat{AOB}\) là OA = OB.

pham thi thu hien
Xem chi tiết
Bình Trần Thị
Xem chi tiết

Gọi M là trung điểm của AB

Xét ΔOAB có OM là đường trung tuyến

nên \(\overrightarrow{OA}+\overrightarrow{OB}=2\cdot\overrightarrow{OM}\)

=>Giá của vecto OA+vecto OB là đường thẳng OM

Để OM là phân giác của góc AOB thì OM vừa là đường trung tuyến vừa là đường phân giác của ΔOAB

=>ΔOAB cân tại O

=>OA=OB

Thi Diem Ly
Xem chi tiết
Toản
Xem chi tiết
Akai Haruma
28 tháng 2 2022 lúc 0:35

Lời giải:
a. $I$ là trung điểm $AH$, $J$ là trung điểm $HC$ nên $IJ$ là đường trung bình ứng với cạnh $AC$ của tam giác $HAC$

$\Rightarrow IJ\parallel AC$ hay $IJ\perp AB$

Tam giác $BAJ$ có $AI\perp BJ, JI\perp AB$ nên $I$ là trực tâm tam giác 

$\Rightarrow BI\perp AJ$

b. Gọi $T,K$ lần lượt là trung điểm $AB, AC$

\((\overrightarrow{MA}+\overrightarrow{MB})(\overrightarrow{MA}+\overrightarrow{MC})=(\overrightarrow{MT}+\overrightarrow{TA}+\overrightarrow{MT}+\overrightarrow{TB})(\overrightarrow{MK}+\overrightarrow{KA}+\overrightarrow{MK}+\overrightarrow{KC})\)

\(=2\overrightarrow{MT}.2\overrightarrow{MK}=0\Leftrightarrow \overrightarrow{MK}\perp \overrightarrow{MT}\)

Vậy $M$ nằm trên đường tròn đường kính $KT$

Akai Haruma
28 tháng 2 2022 lúc 0:36

Hình vẽ:

Lê Hạnh Nguyên
Xem chi tiết
Đỗ Ngọc Hải
31 tháng 5 2018 lúc 15:34

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá

Huy Hoàng
31 tháng 5 2018 lúc 22:31

3/ (Bạn tự vẽ hình giùm)

a/ \(\Delta ABC\)và \(\Delta ADC\)có:

\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)

Cạnh AC chung

\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)

=> \(\Delta ABC\)\(\Delta ADC\)(g. c. g)

=> AD = BC (hai cạnh tương ứng)

và AB = DC (hai cạnh tương ứng)

b/ Ta có AD = BC (cm câu a)

và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)

và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)

=> AN = MC

Chứng minh tương tự, ta cũng có: BM = ND

\(\Delta AMB\)và \(\Delta CND\)có:

BM = ND (cmt)

\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)

AB = CD (\(\Delta ABC\)\(\Delta ADC\))

=> \(\Delta AMB\)\(\Delta CND\)(c. g. c)

=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)

và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)\(\Delta ADC\))

=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)

=> \(\widehat{MAC}=\widehat{ACN}\)(1)

Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)

và AN = MC (cmt) (3)

=> \(\Delta MAC=\Delta NAC\)(g, c. g)

=> AM = CN (hai cạnh tương ứng) (đpcm)

c/ \(\Delta AOB\)và \(\Delta COD\)có:

\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)

AB = CD (cm câu a)

\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)

=> \(\Delta AOB\)\(\Delta COD\)(g. c. g)

=> OA = OC (hai cạnh tương ứng)

và OB = OD (hai cạnh tương ứng)

d/ \(\Delta ONA\)và \(\Delta MOC\)có:

\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)

OA = OC (O là trung điểm AC)

\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)

=> \(\Delta ONA\)\(\Delta MOC\)(g. c. g)

=> ON = OM (hai cạnh tương ứng)

=> O là trung điểm MN

=> M, O, N thẳng hàng (đpcm)

lê thị thu hiền
16 tháng 7 2018 lúc 14:42

gggggggggggggggggggggggggggggg

Phạm Thảo Vân
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Hai Anh
Xem chi tiết