x+(x+1)+(x+2)+...+(x+2017)=2017.2018
Tìm x biết : x(x-2017)-2018x+2017.2018 = 0
Ta có : x(x-2017)-2018x+2017.2018=0
=>x(x-2017)-2018(x-2017)=0
=>(x-2017)(x-2018)=0
=>x=2017;2018.
Tìm x
\(\frac{x-2017}{2015.2016}+\frac{x-2018}{2016.2017}+\frac{x-2019}{2017.2018}+\frac{x-2020}{2018.1019}=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{1018}\)
tìm x biết :(1.2+2.3+3.4+...+2017.2018)/(2018.2019.x)=1/(1+2)+1/(1+2+3)+....+1/(1+2+....+2018)
\(\dfrac{x}{1.2}+\dfrac{x}{2.3}+\dfrac{x}{3.4}+...+\dfrac{x}{2017.2018}=-1\)
`x/(1.2)+x/(2.3)+x/(3.4)+.....+x/(2017.2018)=1`
`-> x/1 - x/2 +x/2-x/3+x/3-x/4+........+x/2017-x/2018=1`
`-> x-x/2018=1`
`-> 2017/2018 .x=1`
`-> x=2018/2017`
X mũ 2+x-2017.2018
1/ Tìm x, biết: x + 2x + 3x +... = 2016x = 2017.2018
2/ Với x nguyên, tìm giá trị lớn nhất A = 2016 - x/ 6-x
Bài 2:
\(A=\dfrac{2016-x}{6-x}=\dfrac{2010+6-x}{6-x}=\dfrac{2010}{6-x}+\dfrac{6-x}{6-x}=1+\dfrac{2010}{6-x}\)
\(A\) đạt \(Max\) khi và chỉ khi \(6-x\) lớn nhất
*)Nếu \(x>6\Rightarrow6-x< 0\Rightarrow\dfrac{2010}{6-x}< 0\)
*)Nếu \(x< 6\Rightarrow6-x>0\Rightarrow\dfrac{2010}{6-x}>0\)
Nên \(\dfrac{2010}{6-x}\) lớn nhất khi \(6-x\) là số nguyên dương nhỏ nhất
\(\Rightarrow6-x=1\Rightarrow x=5\). Khi đó
\(A=1+\dfrac{2010}{6-5}=1+\dfrac{2010}{1}=1+2010=2011\)
Vậy \(A_{Max}=2011\) khi \(x=5\)
1/ Ta có: \(x+2x+3x+...=2016x=2017.2018\)
\(\Rightarrow2016x=4070306\)
\(\Rightarrow x=\dfrac{4070306}{2016}\)
Vậy \(x=\dfrac{4070306}{2016}\).
Câu 1:Sửa lại đề
x+2x+3x+...+2016x=2017.2018
x(1+2+3+.....+2016)=2017.2018
x.2033136=2017.2018
x=2017.2018:2033136
x=\(\dfrac{1009}{504}\)
tính B=\(\left(1-\frac{2}{2.3}\right)\)x\(\left(1-\frac{2}{3.4}\right)\)x.......x\(\left(1-\frac{2}{2017.2018}\right)\)
tìm x: x+2x+3x+...+2016x=2017.2018
x(1+2+3...2016)=2017.2018
x.2017.2016:2=2017.2018
1008x=2018
x=1009/504
Tìm x:
a)2x.(x-5)=2x2+x-11
b)x3-6x2+9x=0
c)x.(x-2018)-2017x+2017.2018=0
\(a,\Leftrightarrow2x^2-10x-2x^2-x=-11\\ \Leftrightarrow-11x=-11\Leftrightarrow x=1\\ b,\Leftrightarrow x\left(x^2-6x+9\right)=0\\ \Leftrightarrow x\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-2018\right)-2017\left(x-2018\right)=0\\ \Leftrightarrow\left(x-2017\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2018\end{matrix}\right.\)