Cho ∆ABC, kẻ AH vuông góc BC và\(\widehat{ }\)góc BAH=2CAH. Tính góc B và C, biết góc A=72°
Cho ∆ABC, kẻ AH vuông góc BC và góc BAH=2CAH. Tính góc B và C, biết góc A=72°
Ta có: ∠BAH + ∠CAH = ∠BAC
Thay ∠BAH = 2∠CAH, ∠BAC = 72°, ta được:
2∠CAH+ ∠CAH = 72°
3∠CAH = 72°
∠CAH = 24°
=> ∠BAH = 48°
Vậy: ∠B = 90° - ∠BAH = 90° - 48° = 42°
∠C = 90° - ∠CAH = 90° - 24 = 66°
Trong tam giác ABC, vẽ AH song song BC tạo với 2 cạnh AB và AC 2 góc sao cho góc BAH = 2CAH. Tính góc B, góc C biết góc A = 72 độ
(cậu tự vẽ hình nhé)
Vì góc BAH= 2 lần góc CAH mà góc BAC+ góc CAH = góc BAH -> góc CAH= góc BAC = 72 độ;
Ta có: AH// BC -> góc CAH= góc BCA = 72 độ ( 2 góc so le trong);
Tam giác ABC có: góc BAC + góc BCA + góc ABC = 180độ (t/c tổng 3 góc trong 1 tam giác);
mà góc BAC và góc BCA = 72độ(cmt) -> góc ABC = 180 độ - 72 độ - 72 độ=36 độ
Vậy góc B= 36 độ, góc C= 72 độ.
Trong tam giác ABC, vẽ AH song song BC tạo với 2 cạnh AB và AC 2 góc sao cho góc BAH = 2CAH. Tính góc B, góc C biết góc A = 72 độ
cho tam giác ABC có góc A = 720. kẻ AH vuông góc vs BC( H thuộc BC) biết góc BAH bằng 2 lần góc CAH. tính góc B và C
ai làm nhanh mk tik cho
Ta có góc A bằng 72 độ, góc BAH = 2CAH mà BAH + CAH = góc A <=> BAH + CAH = 72, thế BAH = 2 CAH vào ta có 2CAH + CAH = 72 độ <=> 3CAH = 72 => CAH = 72/3 = 24 độ => BAH = 72 - 24 = 48 độ.
Từ góc BAH , CAH bạn xét tam giác vuông CAH và BAH để tìm góc B và C nha bạn !!!
Cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC) a. Chứng minh : BH = HC và góc BAH = góc CAH b. Biết AB = AC = 5cm; BC = 8cm. Tính AH
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
1) Trong tam giác ABC,vẽ AH vuông góc với BC TẠO VỚI 2 cạnh AB và AC 2 góc sao cho góc BAH=2 lần góc CAH.Tính góc B,C,biết góc A=72 độ
2) Cho tam giác ABC:goc A=90 độ
a)CMR:góc ABC=góc HAB
b)Gọi Ilà giao điểm các tia phân giác góc BAH và góc C.CMR:AI vuông góc vờiCI
Cho tam giác ABC vuông tại A có 11góc B= 7 góc C
a, tính số đo các góc của tam giác ABC
b, kẻ AH vuông góc với BC ( H thuộc BC ). Tính góc BAH và góc CAH
cho tam giác ABC có AB =AC = 5 cm. BC = 8 cm. kẻ AH vuông góc với BC ( H thuộc BC ) a. C/m HB = HC và góc CAH = góc BAH b. tính độ dài AH c. Kẻ HD vuông góc với AV (D thuộc ÂB ) kẻ HE vuông góc với AC ( E thuộc AC ) chứng minh DE// BC
:
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
Bài 3 :
a)Vì △ABC cân tại A nên AH là đg cao đồng thời cx là đg p/g, đường trung tuyến.
HB=HC và BAHˆ=CAHˆ
b)HC=BC2=82=4
Áp dụng định lý Py-ta-go vào tam gíác vuông AHC có:
AH2=AC2−HC2=.......
AH=...........
c)Xét 2 tam gíác vuông : BDH và CEH có
HB=HC(cmt)
Bˆ=Cˆ(△ABC cân)
Do đó: △BDH=△CEH
DH =EH
dpcm
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H , kẻ tia phân giác của góc BAH cắt BC tại D
a) So sánh góc BAH và góc C ; góc CAH và góc B ; góc DAC và góc ADC
b) Kẻ tia phân giác của góc ACB cắt AD tại K . Chứng minh CK vuông góc với AD
HELP ME !!!!!!!!!!
a) \(\widehat{BAH}=\widehat{C}\) (vì cùng phụ với \(\widehat{B}\)) (1)
\(\widehat{CAH}=\widehat{B}\) (vì cùng phụ với \(\widehat{C}\)) (2)
Xét tam giác DAB có: \(\widehat{ADC}=\widehat{DAB}+\widehat{B}\) (vì góc ngoài bằng tổng hai góc trong không kề với nó)
Ta lại có: \(\widehat{DAC}=\widehat{DAH}+\widehat{HAC}\)
Mà \(\widehat{DAB}=\widehat{DAH}\) (tính chất tia phân giác)
\(\widehat{B}=\widehat{HAC}\) (theo (2))
=> \(\widehat{ADC}=\widehat{DAC}\)
b) Theo câu a ta có: \(\widehat{C}=\widehat{HAB}\)
=> \(\widehat{C_1}=\widehat{C_2}=\widehat{A_1}=\widehat{A_2}\)
Xét tam giác ACK có tổng 2 góc A và C là:
\(\widehat{ACK}+\widehat{CAK}=\widehat{C_2}+\widehat{CAK}=\widehat{A_1}+\widehat{CAK}=\widehat{CAB}=90^o\)
=> Góc còn lại bằng 90 độ, tức là \(\widehat{AKC}=180^o-\left(\widehat{ACK}+\widehat{CAK}\right)=180^o-90^o=90^o\)
=> CK vuông góc với AD