Cho tam giác ABC vuông tại A có M là trung điểm của BC. CM AM = 1/2 BC
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
cho tam giác ABC vuông tại A, M là trung điểm của BC . cm: AM =1/2 BC
= 12 nha bạn
chúc học tốt
Bằng 12 nhé bạn hiền
= 12 nha bn
hok tốt
cho tam giác abc nhọn vẽ về phía ngoài tam giác abc, 2 tam giác bad vuông tại a, ab = ad và tam giác cae vuông tại a và ae = ac:
a) CM BE = CD
b) CM BE _|_ CD
c) gọi M là trung điểm của BC. CM AM _|_ DE
d) gọi N là trung điểm của DE. CM AN _|_ BC
a: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)
\(\widehat{CAD}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
=>\(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=CD
b: Gọi giao điểm của BE với CD là H, giao điểm của BE với AC là G
ΔDAC=ΔBAE
=>\(\widehat{AEB}=\widehat{ACD}\)
Xét ΔEAG có \(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=180^0\)
Xét ΔGHC có \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^0\)
=>\(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)
=>\(\widehat{EAG}=\widehat{GHC}=90^0\)
=>BE vuông góc CD
1) Cho tam giác ABC có 3 góc nhọn. Gọi M là trung điểm của BC. Qua B kẻ đoạn thẳng vuông góc với AM tại H. Qua C kẻ đường thẳng vuông góc với AM tại K
a) Cm: BH//CK
b) Cm: tam giác BMH = tam giác CMK (2 cách)
c) M là trung điểm của HK.
2) Cho tam giác ABC có AB= AC. Vẽ AH vuông góc với BC tại H.
a) Cm: tam giác BAH = tam giác CAH
b) Cm: AH là tia phân giác của góc BAC
1) Cho tam giác ABC có 3 góc nhọn. Gọi M là trung điểm của BC. Qua B kẻ đoạn thẳng vuông góc với AM tại H. Qua C kẻ đường thẳng vuông góc với AM tại K
a) Cm: BH//CK
b) Cm: tam giác BMH = tam giác CMK (2 cách)
c) M là trung điểm của HK.
2) Cho tam giác ABC có AB= AC. Vẽ AH vuông góc với BC tại H.
a) Cm: tam giác BAH = tam giác CAH
b) Cm: AH là tia phân giác của góc BAC
Cho tam giác ABC vuông tại A. M là trung điểm của BC. Trên tia AM lấy điểm n sao cho M là trung điểm của AN. Chứng minh: a. CN - AB, CM // AB b. Am = 1/2 BC.
tam giác ABC vuông tại A.trung tuyến AM, M là trung điểm BC thì ta có AM = 1/2 BC. tam giác ABC bất kí mà trung tuyến AM = 1/2 BC thì có suy ra được tam giác ABC vuông tại A hay không ?
1. Cho tam giác ABC vuông tại A gọi M là trung điểm của BC trên tia AM lấy E sao cho M là trung điểm của AE
a) CM: AB vuông góc với AE
b) CM: AM=1/2 BC
c) Tính AE biết AB=3cm, AC=4cm
Trên nửa mặt phẳng bờ là đường thẳng đi qua hai điểm B, C. Vẽ tia Bx sao cho góc CBx = 70 độ, vẽ tia Cy sao cho góc BCy = 110 độ
a) Chỉ ra các cặp góc bù nhau
b) Qua hình vẽ, dự đoán gì về 2 tia Bx, Cy ?
LÀM HỘ EM ĐƯỢC KHÔNG Ạ ? EM CẢM ƠN NHIỀU Ạ
Cho tam giác ABC vuông tại A có AB<AC. Gọi M Là trung điểm của BC, kẻ MD vuông góc với AB tại D, ME vuông góc với AC tại E
a) Cm AM=DE
b) Cm tứ giác DMCE là hbh
c) Gọi AH là đường cao của tam giác ABC (H thuộc BC). Cm tứ giác DHME là hình thang cân và DE là trung trực của AH
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
B1 :Cho tam giác ABC có 2 đường cao BD,CE. Gọi M,N là trung điểm của BC,DE. C/m MN vuông góc DE.
B2: Cho tam giác ABC cân tại A. H là trung điểm của BC. Kẻ HE vuông góc AC. Gọi I là trung điểm của HE. C/m AI vuông góc BE
B3: Cho tam giác ABC vuông tại A. M là trung điểm của BC. Đường cao AH. Kẻ HE vuông góc AC cắt AM tại N. C/m AM vuông góc BN